import os from trainer import Trainer, TrainerArgs from TTS.config import BaseAudioConfig, BaseDatasetConfig from TTS.tts.configs.fast_pitch_config import FastPitchConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.forward_tts import ForwardTTS from TTS.tts.utils.speakers import SpeakerManager from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, trim_db=23.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = FastPitchConfig( run_name="fast_pitch_ljspeech", audio=audio_config, batch_size=32, eval_batch_size=16, num_loader_workers=8, num_eval_loader_workers=4, compute_input_seq_cache=True, precompute_num_workers=4, compute_f0=True, f0_cache_path=os.path.join(output_path, "f0_cache"), run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="english_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=50, print_eval=False, mixed_precision=False, min_text_len=0, max_text_len=500, min_audio_len=0, max_audio_len=500000, output_path=output_path, datasets=[dataset_config], use_speaker_embedding=True, ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # If characters are not defined in the config, default characters are passed to the config tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init speaker manager for multi-speaker training # it maps speaker-id to speaker-name in the model and data-loader speaker_manager = SpeakerManager() speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") config.model_args.num_speakers = speaker_manager.num_speakers # init model model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager) # INITIALIZE THE TRAINER # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, # distributed training, etc. trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples ) # AND... 3,2,1... 🚀 trainer.fit()