import os import torch from trainer import Trainer, TrainerArgs from TTS.bin.compute_embeddings import compute_embeddings from TTS.bin.resample import resample_files from TTS.config.shared_configs import BaseDatasetConfig from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig from TTS.utils.downloaders import download_libri_tts torch.set_num_threads(24) # pylint: disable=W0105 """ This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model. YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes. """ CURRENT_PATH = os.path.dirname(os.path.abspath(__file__)) # Name of the run for the Trainer RUN_NAME = "YourTTS-CML-TTS" # Path where you want to save the models outputs (configs, checkpoints and tensorboard logs) OUT_PATH = os.path.dirname(os.path.abspath(__file__)) # "/raid/coqui/Checkpoints/original-YourTTS/" # If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that cam be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p RESTORE_PATH = "/raid/edresson/CML_YourTTS/checkpoints_yourtts_cml_tts_dataset/best_model.pth" # Download the checkpoint here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p # This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences SKIP_TRAIN_EPOCH = False # Set here the batch size to be used in training and evaluation BATCH_SIZE = 32 # Training Sampling rate and the target sampling rate for resampling the downloaded dataset (Note: If you change this you might need to redownload the dataset !!) # Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios SAMPLE_RATE = 24000 # Max audio length in seconds to be used in training (every audio bigger than it will be ignored) MAX_AUDIO_LEN_IN_SECONDS = float("inf") ### Download CML-TTS dataset # You need to download the dataset for all languages manually and extract it to a path and then set the CML_DATASET_PATH to this path: https://github.com/freds0/CML-TTS-Dataset#download CML_DATASET_PATH = "./datasets/CML-TTS-Dataset/" ### Download LibriTTS dataset # it will automatic download the dataset, if you have problems you can comment it and manually donwload and extract it ! Download link: https://www.openslr.org/resources/60/train-clean-360.tar.gz LIBRITTS_DOWNLOAD_PATH = "./datasets/LibriTTS/" # Check if LibriTTS dataset is not already downloaded, if not download it if not os.path.exists(LIBRITTS_DOWNLOAD_PATH): print(">>> Downloading LibriTTS dataset:") download_libri_tts(LIBRITTS_DOWNLOAD_PATH, subset="libri-tts-clean-360") # init LibriTTS configs libritts_config = BaseDatasetConfig( formatter="libri_tts", dataset_name="libri_tts", meta_file_train="", meta_file_val="", path=os.path.join(LIBRITTS_DOWNLOAD_PATH, "train-clean-360/"), language="en", ) # init CML-TTS configs pt_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_portuguese_v0.1/"), language="pt-br", ) pl_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_polish_v0.1/"), language="pl", ) it_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_italian_v0.1/"), language="it", ) fr_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_french_v0.1/"), language="fr", ) du_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_dutch_v0.1/"), language="du", ) ge_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_german_v0.1/"), language="ge", ) sp_config = BaseDatasetConfig( formatter="cml_tts", dataset_name="cml_tts", meta_file_train="train.csv", meta_file_val="", path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_spanish_v0.1/"), language="sp", ) # Add here all datasets configs Note: If you want to add new datasets, just add them here and it will automatically compute the speaker embeddings (d-vectors) for this new dataset :) DATASETS_CONFIG_LIST = [libritts_config, pt_config, pl_config, it_config, fr_config, du_config, ge_config, sp_config] ### Extract speaker embeddings SPEAKER_ENCODER_CHECKPOINT_PATH = ( "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar" ) SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json" D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training # Iterates all the dataset configs checking if the speakers embeddings are already computated, if not compute it for dataset_conf in DATASETS_CONFIG_LIST: # Check if the embeddings weren't already computed, if not compute it embeddings_file = os.path.join(dataset_conf.path, "speakers.pth") if not os.path.isfile(embeddings_file): print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset") compute_embeddings( SPEAKER_ENCODER_CHECKPOINT_PATH, SPEAKER_ENCODER_CONFIG_PATH, embeddings_file, old_speakers_file=None, config_dataset_path=None, formatter_name=dataset_conf.formatter, dataset_name=dataset_conf.dataset_name, dataset_path=dataset_conf.path, meta_file_train=dataset_conf.meta_file_train, meta_file_val=dataset_conf.meta_file_val, disable_cuda=False, no_eval=False, ) D_VECTOR_FILES.append(embeddings_file) # Audio config used in training. audio_config = VitsAudioConfig( sample_rate=SAMPLE_RATE, hop_length=256, win_length=1024, fft_size=1024, mel_fmin=0.0, mel_fmax=None, num_mels=80, ) # Init VITSArgs setting the arguments that are needed for the YourTTS model model_args = VitsArgs( spec_segment_size=62, hidden_channels=192, hidden_channels_ffn_text_encoder=768, num_heads_text_encoder=2, num_layers_text_encoder=10, kernel_size_text_encoder=3, dropout_p_text_encoder=0.1, d_vector_file=D_VECTOR_FILES, use_d_vector_file=True, d_vector_dim=512, speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH, speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH, resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model # Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper use_speaker_encoder_as_loss=False, # Useful parameters to enable multilingual training use_language_embedding=True, embedded_language_dim=4, ) # General training config, here you can change the batch size and others useful parameters config = VitsConfig( output_path=OUT_PATH, model_args=model_args, run_name=RUN_NAME, project_name="YourTTS", run_description=""" - YourTTS trained using CML-TTS and LibriTTS datasets """, dashboard_logger="tensorboard", logger_uri=None, audio=audio_config, batch_size=BATCH_SIZE, batch_group_size=48, eval_batch_size=BATCH_SIZE, num_loader_workers=8, eval_split_max_size=256, print_step=50, plot_step=100, log_model_step=1000, save_step=5000, save_n_checkpoints=2, save_checkpoints=True, target_loss="loss_1", print_eval=False, use_phonemes=False, phonemizer="espeak", phoneme_language="en", compute_input_seq_cache=True, add_blank=True, text_cleaner="multilingual_cleaners", characters=CharactersConfig( characters_class="TTS.tts.models.vits.VitsCharacters", pad="_", eos="&", bos="*", blank=None, characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20", punctuations="\u2014!'(),-.:;?\u00bf ", phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ", is_unique=True, is_sorted=True, ), phoneme_cache_path=None, precompute_num_workers=12, start_by_longest=True, datasets=DATASETS_CONFIG_LIST, cudnn_benchmark=False, max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS, mixed_precision=False, test_sentences=[ ["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "9351", None, "pt-br"], ["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "12249", None, "pt-br"], [ "S\u00e3o necess\u00e1rios muitos anos de trabalho para ter sucesso da noite para o dia.", "2961", None, "pt-br", ], ["You'll have the view of the top of the mountain that you climb.", "LTTS_6574", None, "en"], ["When you don\u2019t take any risks, you risk everything.", "LTTS_6206", None, "en"], ["Are necessary too many years of work to succeed overnight.", "LTTS_5717", None, "en"], ["Je hebt uitzicht op de top van de berg die je beklimt.", "960", None, "du"], ["Als je geen risico neemt, riskeer je alles.", "2450", None, "du"], ["Zijn te veel jaren werk nodig om van de ene op de andere dag te slagen.", "10984", None, "du"], ["Vous aurez la vue sur le sommet de la montagne que vous gravirez.", "6381", None, "fr"], ["Quand tu ne prends aucun risque, tu risques tout.", "2825", None, "fr"], [ "Sont n\u00e9cessaires trop d'ann\u00e9es de travail pour r\u00e9ussir du jour au lendemain.", "1844", None, "fr", ], ["Sie haben die Aussicht auf die Spitze des Berges, den Sie erklimmen.", "2314", None, "ge"], ["Wer nichts riskiert, riskiert alles.", "7483", None, "ge"], ["Es sind zu viele Jahre Arbeit notwendig, um \u00fcber Nacht erfolgreich zu sein.", "12461", None, "ge"], ["Avrai la vista della cima della montagna che sali.", "4998", None, "it"], ["Quando non corri alcun rischio, rischi tutto.", "6744", None, "it"], ["Are necessary too many years of work to succeed overnight.", "1157", None, "it"], [ "B\u0119dziesz mie\u0107 widok na szczyt g\u00f3ry, na kt\u00f3r\u0105 si\u0119 wspinasz.", "7014", None, "pl", ], ["Kiedy nie podejmujesz \u017cadnego ryzyka, ryzykujesz wszystko.", "3492", None, "pl"], [ "Potrzebne s\u0105 zbyt wiele lat pracy, aby odnie\u015b\u0107 sukces z dnia na dzie\u0144.", "1890", None, "pl", ], ["Tendr\u00e1s la vista de la cima de la monta\u00f1a que subes", "101", None, "sp"], ["Cuando no te arriesgas, lo arriesgas todo.", "5922", None, "sp"], [ "Son necesarios demasiados a\u00f1os de trabajo para triunfar de la noche a la ma\u00f1ana.", "10246", None, "sp", ], ], # Enable the weighted sampler use_weighted_sampler=True, # Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has # weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0}, weighted_sampler_attrs={"language": 1.0}, weighted_sampler_multipliers={ # "speaker_name": { # you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch. # It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt. # The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset. # 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106 # } }, # It defines the Speaker Consistency Loss (SCL) α to 9 like the YourTTS paper speaker_encoder_loss_alpha=9.0, ) # Load all the datasets samples and split traning and evaluation sets train_samples, eval_samples = load_tts_samples( config.datasets, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # Init the model model = Vits.init_from_config(config) # Init the trainer and 🚀 trainer = Trainer( TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH), config, output_path=OUT_PATH, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit()