import unittest import numpy as np import torch from torch import optim from TTS.vocoder.configs import WavegradConfig from TTS.vocoder.models.wavegrad import Wavegrad, WavegradArgs # pylint: disable=unused-variable torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class WavegradTrainTest(unittest.TestCase): def test_train_step(self): # pylint: disable=no-self-use """Test if all layers are updated in a basic training cycle""" input_dummy = torch.rand(8, 1, 20 * 300).to(device) mel_spec = torch.rand(8, 80, 20).to(device) criterion = torch.nn.L1Loss().to(device) args = WavegradArgs( in_channels=80, out_channels=1, upsample_factors=[5, 5, 3, 2, 2], upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], ) config = WavegradConfig(model_params=args) model = Wavegrad(config) model_ref = Wavegrad(config) model.train() model.to(device) betas = np.linspace(1e-6, 1e-2, 1000) model.compute_noise_level(betas) model_ref.load_state_dict(model.state_dict()) model_ref.to(device) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=0.001) for i in range(5): y_hat = model.forward(input_dummy, mel_spec, torch.rand(8).to(device)) optimizer.zero_grad() loss = criterion(y_hat, input_dummy) loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1