import gradio as gr from transformers import pipeline # Load the model qa_pipeline = pipeline("question-answering", model="william4416/bewtesttwo") # Define the function to process the JSONL file def process_jsonl(file_path): with open(file_path, "r", encoding="utf-8") as f: data = f.readlines() return [eval(line) for line in data] # Define the function to answer questions from the model def answer_question(context, question): # Process the context from the JSONL file contexts = [item["context"] for item in context] # Perform question answering answers = [] for ctxt in contexts: answer = qa_pipeline(question=question, context=ctxt) answers.append(answer["answer"]) return answers # Create the interface context_input = gr.inputs.File(label="utsdata.jsonl") question_input = gr.inputs.Textbox(label="Enter your question", lines=3) output_text = gr.outputs.Textbox(label="Answer") # Create the interface gr.Interface( fn=answer_question, inputs=[context_input, question_input], outputs=output_text, title="Question Answering with Hugging Face Transformers", description="Upload a JSONL file containing contexts and ask a question to get answers.", ).launch()