sherpa-onnx-tts / app.py
willwade's picture
Create app.py
56c77d7 verified
raw
history blame
20.9 kB
import os
import json
import gradio as gr
import shutil
import subprocess
import requests
import tarfile
from pathlib import Path
import soundfile as sf
import sherpa_onnx
from deep_translator import GoogleTranslator
import numpy as np
from iso639 import Lang
import pycountry
# Load model JSON
MODEL_JSON_URL = "https://github.com/willwade/tts-wrapper/blob/main/tts_wrapper/engines/sherpaonnx/merged_models.json"
MODEL_JSON_PATH = "./models.json"
# Load models
if not os.path.exists(MODEL_JSON_PATH):
response = requests.get(MODEL_JSON_URL.replace("/blob/", "/raw/"))
with open(MODEL_JSON_PATH, "w") as f:
f.write(response.text)
with open(MODEL_JSON_PATH, "r") as f:
models = json.load(f)
def get_model_display_info(model_info):
"""Create a display string for a model."""
# Get language info
lang_info = model_info.get('language', [{}])[0]
lang_name = lang_info.get('language_name', lang_info.get('Language Name', 'Unknown'))
lang_code = lang_info.get('lang_code', lang_info.get('Iso Code', 'Unknown'))
# Get model info
voice_name = model_info.get('name', model_info.get('id', 'Unknown'))
developer = model_info.get('developer', '')
quality = model_info.get('quality', 'MMS' if 'mms' in voice_name.lower() else '')
# Create display name
model_display = f"{voice_name} ({developer}"
if quality:
model_display += f" - {quality}"
model_display += ")"
# Combine language and model info
return f"{lang_name} ({lang_code}) | {model_display}"
# Group models by language
models_by_lang = {}
for model_id, model_info in models.items():
# Get language info from the first language in the list
lang_info = model_info.get('language', [{}])[0]
lang_name = lang_info.get('language_name', lang_info.get('Language Name', 'Unknown'))
lang_code = lang_info.get('lang_code', lang_info.get('Iso Code', 'Unknown'))
group_key = f"{lang_name} ({lang_code})"
if group_key not in models_by_lang:
models_by_lang[group_key] = []
# Add model to language group
models_by_lang[group_key].append((get_model_display_info(model_info), model_id))
# Create dropdown choices with model IDs as values
dropdown_choices = []
models_by_display = {} # Map display names to model IDs
for lang, model_list in sorted(models_by_lang.items()):
# Add all models in this language group
for display_name, model_id in sorted(model_list):
dropdown_choices.append(display_name)
models_by_display[display_name] = model_id
def get_language_code(model_info):
"""Get the language code."""
if not model_info.get("language"):
return None
lang_info = model_info["language"][0]
# Try both key formats for language code
lang_code = lang_info.get("lang_code", lang_info.get("Iso Code", "")).lower()
return lang_code
# Special cases for codes not in ISO standard
SPECIAL_CODES = {
"cmn": "zh", # Mandarin Chinese
"yue": "zh", # Cantonese
"pi": "el", # Pali (using Greek for this model)
"guj": "gu", # Gujarati
}
def get_translate_code(iso_code):
"""Convert ISO code to Google Translate code."""
if not iso_code:
return None
# Remove any script or dialect specifiers
base_code = iso_code.split('-')[0].lower()
# Check special cases first
if base_code in SPECIAL_CODES:
return SPECIAL_CODES[base_code]
try:
# Try to get the ISO 639-1 (2-letter) code
lang = Lang(base_code)
return lang.pt1
except:
# If that fails, try to find a matching language in pycountry
try:
lang = pycountry.languages.get(alpha_3=base_code)
if lang and hasattr(lang, 'alpha_2'):
return lang.alpha_2
except:
pass
# If all else fails, try to use the original code
if len(base_code) == 2:
return base_code
return None
def translate_text(input_text, source_lang="en", target_lang="en"):
"""Translate text using Google Translator."""
if source_lang == target_lang:
return input_text
try:
# Convert ISO code to Google Translate code
target_lang = get_translate_code(target_lang)
try:
translated = GoogleTranslator(source=source_lang, target=target_lang).translate(input_text)
return f"{translated} (translated from: {input_text})"
except Exception as first_error:
# If the first attempt fails with the mapped code, try with the original
try:
translated = GoogleTranslator(source=source_lang, target=target_lang).translate(input_text)
return f"{translated} (translated from: {input_text})"
except:
raise first_error
except Exception as e:
print(f"Translation error: {str(e)} for target language: {target_lang}")
print(f"Attempted to use language code: {target_lang}")
return f"Translation Error: Could not translate to {target_lang}. Original text: {input_text}"
def download_and_extract_model(url, destination):
"""Download and extract the model files."""
print(f"Downloading from URL: {url}")
print(f"Destination: {destination}")
# Convert Hugging Face URL format if needed
if "huggingface.co" in url:
# Replace /tree/main/ with /resolve/main/ for direct file download
base_url = url.replace("/tree/main/", "/resolve/main/")
model_id = base_url.split("/")[-1]
# Check if this is an MMS model
is_mms_model = "mms-tts-multilingual-models-onnx" in url
if is_mms_model:
# MMS models have both model.onnx and tokens.txt
model_url = f"{base_url}/model.onnx"
tokens_url = f"{base_url}/tokens.txt"
# Download model.onnx
print("Downloading model.onnx...")
model_path = os.path.join(destination, "model.onnx")
response = requests.get(model_url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}")
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
downloaded = 0
print(f"Total size: {total_size / (1024*1024):.1f} MB")
with open(model_path, "wb") as f:
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = int((downloaded / total_size) * 100)
if percent % 10 == 0:
print(f" {percent}%", end="", flush=True)
print("\nModel download complete")
# Download tokens.txt
print("Downloading tokens.txt...")
tokens_path = os.path.join(destination, "tokens.txt")
response = requests.get(tokens_url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}")
with open(tokens_path, "wb") as f:
f.write(response.content)
print("Tokens download complete")
return
else:
# Other models are stored as tar.bz2 files
url = f"{base_url}.tar.bz2"
# Try the URL
response = requests.get(url, stream=True)
if response.status_code != 200:
raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}")
# Check if this is a Git LFS file pointer
content_start = response.content[:100].decode('utf-8', errors='ignore')
if content_start.startswith('version https://git-lfs.github.com/spec/v1'):
raise Exception(f"Received Git LFS pointer instead of file content from {url}")
# Create model directory if it doesn't exist
os.makedirs(destination, exist_ok=True)
# For non-MMS models, handle tar.bz2 files
tar_path = os.path.join(destination, "model.tar.bz2")
# Download the file
print("Downloading model archive...")
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
downloaded = 0
print(f"Total size: {total_size / (1024*1024):.1f} MB")
with open(tar_path, "wb") as f:
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = int((downloaded / total_size) * 100)
if percent % 10 == 0:
print(f" {percent}%", end="", flush=True)
print("\nDownload complete")
# Extract the tar.bz2 file
print(f"Extracting {tar_path} to {destination}")
try:
with tarfile.open(tar_path, "r:bz2") as tar:
tar.extractall(path=destination)
os.remove(tar_path)
print("Extraction complete")
except Exception as e:
print(f"Error during extraction: {str(e)}")
raise
print("Contents of destination directory:")
for root, dirs, files in os.walk(destination):
print(f"\nDirectory: {root}")
if dirs:
print(" Subdirectories:", dirs)
if files:
print(" Files:", files)
def find_model_files(model_dir):
"""Find model files in the given directory and its subdirectories."""
model_files = {}
# Check if this is an MMS model
is_mms = 'mms' in os.path.basename(model_dir).lower()
for root, _, files in os.walk(model_dir):
for file in files:
file_path = os.path.join(root, file)
# Model file
if file.endswith('.onnx'):
model_files['model'] = file_path
# Tokens file
elif file == 'tokens.txt':
model_files['tokens'] = file_path
# Lexicon file (only for non-MMS models)
elif file == 'lexicon.txt' and not is_mms:
model_files['lexicon'] = file_path
# Create empty lexicon file if needed (only for non-MMS models)
if not is_mms and 'model' in model_files and 'lexicon' not in model_files:
model_dir = os.path.dirname(model_files['model'])
lexicon_path = os.path.join(model_dir, 'lexicon.txt')
with open(lexicon_path, 'w', encoding='utf-8') as f:
pass # Create empty file
model_files['lexicon'] = lexicon_path
return model_files if 'model' in model_files else {}
def generate_audio(text, model_info):
"""Generate audio from text using the specified model."""
try:
model_dir = os.path.join("./models", model_info['id'])
print(f"\nLooking for model in: {model_dir}")
# Download model if it doesn't exist
if not os.path.exists(model_dir):
print(f"Model directory doesn't exist, downloading {model_info['id']}...")
os.makedirs(model_dir, exist_ok=True)
download_and_extract_model(model_info['url'], model_dir)
print(f"Contents of {model_dir}:")
for item in os.listdir(model_dir):
item_path = os.path.join(model_dir, item)
if os.path.isdir(item_path):
print(f" Directory: {item}")
print(f" Contents: {os.listdir(item_path)}")
else:
print(f" File: {item}")
# Find and validate model files
model_files = find_model_files(model_dir)
if not model_files or 'model' not in model_files:
raise ValueError(f"Could not find required model files in {model_dir}")
print("\nFound model files:")
print(f"Model: {model_files['model']}")
print(f"Tokens: {model_files.get('tokens', 'Not found')}")
print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n")
# Check if this is an MMS model
is_mms = 'mms' in os.path.basename(model_dir).lower()
# Create configuration based on model type
if is_mms:
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
raise ValueError("tokens.txt is required for MMS models")
# MMS models use tokens.txt and no lexicon
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
model_files['model'], # model
'', # lexicon
model_files['tokens'], # tokens
'', # data_dir
'', # dict_dir
0.667, # noise_scale
0.8, # noise_scale_w
1.0 # length_scale
)
else:
# Non-MMS models use lexicon.txt
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
raise ValueError("tokens.txt is required for VITS models")
# Set data dir if it exists
espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data')
data_dir = espeak_data if os.path.exists(espeak_data) else ''
# Get lexicon path if it exists
lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else ''
# Create VITS model config
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
model_files['model'], # model
lexicon, # lexicon
model_files['tokens'], # tokens
data_dir, # data_dir
'', # dict_dir
0.667, # noise_scale
0.8, # noise_scale_w
1.0 # length_scale
)
# Create the model config with VITS
model_config = sherpa_onnx.OfflineTtsModelConfig()
model_config.vits = vits_config
# Create TTS configuration
config = sherpa_onnx.OfflineTtsConfig(
model=model_config,
max_num_sentences=2
)
# Initialize TTS engine
tts = sherpa_onnx.OfflineTts(config)
# Generate audio
audio_data = tts.generate(text)
# Ensure we have valid audio data
if audio_data is None or len(audio_data.samples) == 0:
raise ValueError("Failed to generate audio - no data generated")
# Convert samples list to numpy array and normalize
audio_array = np.array(audio_data.samples, dtype=np.float32)
if np.any(audio_array): # Check if array is not all zeros
audio_array = audio_array / np.abs(audio_array).max()
else:
raise ValueError("Generated audio is empty")
# Return in Gradio's expected format (numpy array, sample rate)
return (audio_array, audio_data.sample_rate)
except Exception as e:
error_msg = str(e)
# Check for OOV or token conversion errors
if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower():
error_msg = f"Text contains unsupported characters: {error_msg}"
print(f"Error generating audio: {error_msg}")
print(f"Error in TTS generation: {error_msg}")
raise
def tts_interface(selected_model, text, translate_enabled, status_output):
try:
if not text.strip():
return None, "Please enter some text"
# Get model ID from the display name mapping
model_id = models_by_display.get(selected_model)
if not model_id or model_id not in models:
return None, "Please select a model"
model_info = models[model_id]
# Check if this is an MMS model
is_mms = 'mms' in model_id.lower()
# Get the language code and check if translation is needed
lang_code = get_language_code(model_info)
translate_code = get_translate_code(lang_code)
# For MMS models, we always need to translate
if is_mms:
if not translate_code:
return None, f"Cannot determine translation target language from code: {lang_code}"
print(f"MMS model detected, translating to {translate_code}")
text = translate_text(text, "en", translate_code)
# For other models, check if translation is enabled and needed
elif translate_enabled and translate_code and translate_code != "en":
if not translate_code:
return None, f"Cannot determine translation target language from code: {lang_code}"
print(f"Will translate to {translate_code} (from ISO code {lang_code})")
text = translate_text(text, "en", translate_code)
try:
# Update status with language info
lang_info = model_info.get('language', [{}])[0]
lang_name = lang_info.get('language_name', 'Unknown')
voice_name = model_info.get('name', model_id)
status = f"Generating speech using {voice_name} ({lang_name})..."
# Generate audio
audio_data, sample_rate = generate_audio(text, model_info)
return (sample_rate, audio_data), f"Generated speech using {voice_name} ({lang_name})"
except ValueError as e:
# Handle known errors with user-friendly messages
error_msg = str(e)
if "cannot process some words" in error_msg.lower():
return None, error_msg
return None, f"Error: {error_msg}"
except Exception as e:
print(f"Error in TTS generation: {str(e)}")
error_msg = str(e)
return None, f"Error: {error_msg}"
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# Sherpa-ONNX TTS Demo")
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(
choices=dropdown_choices,
label="Select Model",
value=dropdown_choices[0] if dropdown_choices else None
)
text_input = gr.Textbox(
label="Text to speak",
placeholder="Enter text here...",
lines=3
)
translate_checkbox = gr.Checkbox(
label="Translate to model language",
value=False
)
with gr.Row():
generate_btn = gr.Button("Generate Audio")
stop_btn = gr.Button("Stop")
with gr.Column():
audio_output = gr.Audio(
label="Generated Audio",
type="numpy"
)
status_text = gr.Textbox(
label="Status",
interactive=False
)
# Handle model selection to update translate checkbox
def update_translate_checkbox(selected_model):
"""Update visibility of translate checkbox based on selected model's language."""
try:
# Find the model info for the selected model
for lang_group in models_by_lang.values():
for display_name, model_id in lang_group:
if display_name == selected_model:
model_info = models[model_id]
lang_info = model_info.get('language', [{}])[0]
lang_code = lang_info.get('lang_code', '')
return {"visible": lang_code != 'en'}
return {"visible": False}
except Exception as e:
print(f"Error updating translate checkbox: {str(e)}")
return {"visible": False}
model_dropdown.change(
fn=update_translate_checkbox,
inputs=[model_dropdown],
outputs=[translate_checkbox]
)
# Set up event handlers
gen_event = generate_btn.click(
fn=tts_interface,
inputs=[model_dropdown, text_input, translate_checkbox, status_text],
outputs=[audio_output, status_text]
)
stop_btn.click(
fn=None,
cancels=gen_event,
queue=False
)
app.launch()