Spaces:
Running
Running
from typing import List, Tuple | |
import torch | |
import nltk | |
from SciAssist import DatasetExtraction | |
device = "gpu" if torch.cuda.is_available() else "cpu" | |
de_pipeline = DatasetExtraction(os_name="nt", device=device) | |
def de_for_str(input): | |
list_input = nltk.sent_tokenize(input) | |
results = de_pipeline.extract(list_input, type="str", save_results=False) | |
# output = [] | |
# for res in results["dataset_mentions"]: | |
# output.append(f"{res}\n\n") | |
# return "".join(output) | |
output = [] | |
for mention_pair in results["dataset_mentions"]: | |
output.append((mention_pair[0], mention_pair[1])) | |
output.append(("\n\n", None)) | |
return output | |
def de_for_file(input): | |
if input == None: | |
return None | |
filename = input.name | |
# Identify the format of input and parse reference strings | |
if filename[-4:] == ".txt": | |
results = de_pipeline.extract(filename, type="txt", save_results=False) | |
elif filename[-4:] == ".pdf": | |
results = de_pipeline.extract(filename, type="pdf", save_results=False) | |
else: | |
return [("File Format Error !", None)] | |
output = [] | |
for mention_pair in results["dataset_mentions"]: | |
output.append((mention_pair[0], mention_pair[1])) | |
output.append(("\n\n", None)) | |
return output | |
de_str_example = "BAKIS incorporates information derived from the bank balance sheets and supervisory reports of all German banks ." |