wismaeka commited on
Commit
8fdd5f2
·
verified ·
1 Parent(s): 51d76dd

Update prediction.py

Browse files
Files changed (1) hide show
  1. prediction.py +18 -4
prediction.py CHANGED
@@ -1,8 +1,14 @@
1
  import pandas as pd
2
- from tensorflow.keras.layers import TFSMLayer
 
 
3
  import streamlit as st
4
 
5
- model = TFSMLayer('/itsok', call_endpoint='serving_default')
 
 
 
 
6
 
7
 
8
  def run():
@@ -10,7 +16,7 @@ def run():
10
  st.write('This is a simple web app to predict sentiment of a text using deep learning. Input your feeling below to get the prediction.')
11
  st.write('Trust me, I have analyzed it for you!')
12
 
13
- text = st.text_input('Text', 'I feel so sad today')
14
 
15
  def convert_to_label(pred):
16
  if pred == 0:
@@ -31,7 +37,15 @@ def run():
31
  return 'Unknown'
32
 
33
  if st.button("Predict Your Feeling"):
34
- prediction = model.predict(text)
 
 
 
 
 
 
 
 
35
  label = convert_to_label(prediction)
36
  if label == 'Normal':
37
  st.success('Hi! Keep up the good work! You are feeling Okay today.')
 
1
  import pandas as pd
2
+ import numpy
3
+ # from tensorflow.keras.layers import TFSMLayer
4
+ from transformers import TFAutoModelForSequenceClassification, AutoTokenizer
5
  import streamlit as st
6
 
7
+ # model = TFSMLayer('/itsok', call_endpoint='serving_default')
8
+ model_name='saved_model.pb'
9
+
10
+ model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
 
13
 
14
  def run():
 
16
  st.write('This is a simple web app to predict sentiment of a text using deep learning. Input your feeling below to get the prediction.')
17
  st.write('Trust me, I have analyzed it for you!')
18
 
19
+ texts = st.text_input('Text', 'I feel so sad today')
20
 
21
  def convert_to_label(pred):
22
  if pred == 0:
 
37
  return 'Unknown'
38
 
39
  if st.button("Predict Your Feeling"):
40
+ # prediction = model.predict(text)
41
+ inputs = tokenizer(texts, return_tensors="tf", padding=True, truncation=True)
42
+ # Perform inference
43
+ outputs = model(inputs)
44
+ logits = outputs.logits
45
+
46
+ # If you want to get the predicted classes
47
+ prediction = tf.argmax(logits, axis=-1).numpy()
48
+
49
  label = convert_to_label(prediction)
50
  if label == 'Normal':
51
  st.success('Hi! Keep up the good work! You are feeling Okay today.')