wissem29 commited on
Commit
be6f5ff
·
verified ·
1 Parent(s): 8e9272d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -30
app.py CHANGED
@@ -1,45 +1,35 @@
1
  from langchain import HuggingFaceHub
2
- from langchain.schema import HumanMessage,SystemMessage,AIMessage
3
-
4
  from dotenv import load_dotenv
 
5
 
 
6
  load_dotenv()
7
 
8
- import streamlit as st
9
- ##streamlit app
 
 
10
  st.set_page_config(page_title="Chatbot")
11
  st.header('Langchain Application')
12
 
 
13
 
14
-
15
- # Initialization session
16
- ##if 'key' not in st.session_state:
17
- # st.session_state['key'] =[
18
- # SystemMessage(content='You are AI ')
19
- # ]
20
-
21
-
22
- # function to load huggingface model and get response
23
  def get_huggingface_response(question):
24
- llm_huggingface=HuggingFaceHub(repo_id="google/flan-t5-large",model_kwargs={"temperature":0.0})
25
-
26
- #st.session_state['key'].append(HumanMessage(content=question))
27
- #response=llm_huggingface(st.session_state['key'])
28
  response = llm_huggingface(question)
29
- #st.session_state['key'].append(AIMessage(content=response))
30
- return(response)
31
-
32
-
33
 
 
 
34
 
35
- ##streamlit input
36
- input=st.text_input("Input: ",key="input")
37
- ## call function
38
- response=get_huggingface_response(input)
39
 
40
- ##streamlit button
41
- submit=st.button('Generate')
42
- ## click button
43
  if submit:
44
- st.subheader("The response is ")
45
- st.write(response)
 
 
 
 
1
  from langchain import HuggingFaceHub
2
+ from langchain.schema import AIMessage
 
3
  from dotenv import load_dotenv
4
+ import streamlit as st
5
 
6
+ # Load environment variables
7
  load_dotenv()
8
 
9
+ # Initialize HuggingFace model outside the app
10
+ llm_huggingface = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature": 0.0, "max_length": 64})
11
+
12
+ # Streamlit app
13
  st.set_page_config(page_title="Chatbot")
14
  st.header('Langchain Application')
15
 
16
+ # Remove the session_state initialization as it's not being used in this example
17
 
18
+ # Function to load HuggingFace model and get response
 
 
 
 
 
 
 
 
19
  def get_huggingface_response(question):
 
 
 
 
20
  response = llm_huggingface(question)
21
+ return response
 
 
 
22
 
23
+ # Streamlit input
24
+ user_input = st.text_input("Input: ", key="input")
25
 
26
+ # Streamlit button
27
+ submit = st.button('Generate')
 
 
28
 
29
+ # Check if button is clicked
 
 
30
  if submit:
31
+ # Call function to get response
32
+ response = get_huggingface_response(user_input)
33
+ # Display response
34
+ st.subheader("The response is ")
35
+ st.write(response)