from langchain import HuggingFaceHub from dotenv import load_dotenv import streamlit as st # variable d'environement load_dotenv() # HuggingFace model llm_huggingface = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature": 0.0, "max_length": 64}) # Streamlit app st.set_page_config(page_title="Chatbot") st.header('Langchain Application') # Function to get responsr def get_huggingface_response(question): response = llm_huggingface(question) return response # Streamlit input user_input = st.text_input("Input: ", key="input") # Streamlit button submit = st.button('Generate') if submit: response = get_huggingface_response(user_input) st.subheader("The response is ") st.write(response)