PFA-Demo / two_stream_infer.py
wissemkarous's picture
utils
8e606bb verified
raw
history blame
1.11 kB
from models.two_stream_lipnet import TwoStreamLipNet
import options as opt
import os
import torch
import streamlit as st
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
@st.cache_resource
def load_model():
model = TwoStreamLipNet()
model = model.to(opt.device)
# load the pretrained weights
if hasattr(opt, "two_stream_weights"):
pretrained_dict = torch.load(
opt.two_stream_weights, map_location=torch.device(opt.device)
)
model_dict = model.state_dict()
pretrained_dict = {
k: v
for k, v in pretrained_dict.items()
if k in model_dict.keys() and v.size() == model_dict[k].size()
}
missed_params = [
k for k, v in model_dict.items() if not k in pretrained_dict.keys()
]
print(
"loaded params/tot params:{}/{}".format(
len(pretrained_dict), len(model_dict)
)
)
print("miss matched params:{}".format(missed_params))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model