Spaces:
Sleeping
Sleeping
# encoding: utf-8 | |
import numpy as np | |
import cv2 | |
import os | |
from torch.utils.data import Dataset | |
from cvtransforms import * | |
import torch | |
import editdistance | |
class MyDataset(Dataset): | |
letters = [ | |
" ", | |
"A", | |
"B", | |
"C", | |
"D", | |
"E", | |
"F", | |
"G", | |
"H", | |
"I", | |
"J", | |
"K", | |
"L", | |
"M", | |
"N", | |
"O", | |
"P", | |
"Q", | |
"R", | |
"S", | |
"T", | |
"U", | |
"V", | |
"W", | |
"X", | |
"Y", | |
"Z", | |
] | |
def __init__(self, video_path, anno_path, file_list, vid_pad, txt_pad, phase): | |
self.anno_path = anno_path | |
self.vid_pad = vid_pad | |
self.txt_pad = txt_pad | |
self.phase = phase | |
with open(file_list, "r") as f: | |
self.videos = [ | |
os.path.join(video_path, line.strip()) for line in f.readlines() | |
] | |
self.data = [] | |
for vid in self.videos: | |
# items = vid.split(os.path.sep) | |
items = vid.split("/") | |
self.data.append((vid, items[-4], items[-1])) | |
def __getitem__(self, idx): | |
(vid, spk, name) = self.data[idx] | |
vid = self._load_vid(vid) | |
anno = self._load_anno( | |
os.path.join(self.anno_path, spk, "align", name + ".align") | |
) | |
if self.phase == "train": | |
vid = HorizontalFlip(vid) | |
vid = ColorNormalize(vid) | |
vid_len = vid.shape[0] | |
anno_len = anno.shape[0] | |
vid = self._padding(vid, self.vid_pad) | |
anno = self._padding(anno, self.txt_pad) | |
return { | |
"vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)), | |
"txt": torch.LongTensor(anno), | |
"txt_len": anno_len, | |
"vid_len": vid_len, | |
} | |
def __len__(self): | |
return len(self.data) | |
def _load_vid(self, p): | |
files = os.listdir(p) | |
files = list(filter(lambda file: file.find(".jpg") != -1, files)) | |
files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) | |
array = [cv2.imread(os.path.join(p, file)) for file in files] | |
array = list(filter(lambda im: not im is None, array)) | |
array = [ | |
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) for im in array | |
] | |
array = np.stack(array, axis=0).astype(np.float32) | |
return array | |
def _load_anno(self, name): | |
with open(name, "r") as f: | |
lines = [line.strip().split(" ") for line in f.readlines()] | |
txt = [line[2] for line in lines] | |
txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt)) | |
return MyDataset.txt2arr(" ".join(txt).upper(), 1) | |
def _padding(self, array, length): | |
array = [array[_] for _ in range(array.shape[0])] | |
size = array[0].shape | |
for i in range(length - len(array)): | |
array.append(np.zeros(size)) | |
return np.stack(array, axis=0) | |
def txt2arr(txt, start): | |
arr = [] | |
for c in list(txt): | |
arr.append(MyDataset.letters.index(c) + start) | |
return np.array(arr) | |
def arr2txt(arr, start): | |
txt = [] | |
for n in arr: | |
if n >= start: | |
txt.append(MyDataset.letters[n - start]) | |
return "".join(txt).strip() | |
def ctc_arr2txt(arr, start): | |
pre = -1 | |
txt = [] | |
for n in arr: | |
if pre != n and n >= start: | |
if ( | |
len(txt) > 0 | |
and txt[-1] == " " | |
and MyDataset.letters[n - start] == " " | |
): | |
pass | |
else: | |
txt.append(MyDataset.letters[n - start]) | |
pre = n | |
return "".join(txt).strip() | |
def wer(predict, truth): | |
word_pairs = [(p[0].split(" "), p[1].split(" ")) for p in zip(predict, truth)] | |
wer = [1.0 * editdistance.eval(p[0], p[1]) / len(p[1]) for p in word_pairs] | |
return wer | |
def cer(predict, truth): | |
cer = [ | |
1.0 * editdistance.eval(p[0], p[1]) / len(p[1]) for p in zip(predict, truth) | |
] | |
return cer | |