Spaces:
Sleeping
Sleeping
from tensorflow.keras.models import load_model | |
# Load your trained model | |
model = load_model('path_to_your_model.h5') | |
import pandas as pd | |
def predict_from_csv(file_path): | |
# Load the data | |
data = pd.read_csv(file_path) | |
# Assume your model expects data in a specific order and format | |
# Here we reorder the columns if necessary and handle any preprocessing like normalization | |
required_columns = ['CAN ID', 'RTR', 'DLC', 'Data1', 'Data2', 'Data3', 'Data4', 'Data5', 'Data6', 'Data7', 'Data8'] | |
data = data[required_columns] | |
# Convert data to numpy array or the format your model expects | |
input_data = data.values | |
# Predict using the model | |
predictions = model.predict(input_data) | |
# Here, you could process the predictions to a more readable format if needed | |
return predictions | |
def interface_func(file_info): | |
# Get the path of the uploaded file | |
filepath = file_info["path"] | |
# Use the prediction function | |
prediction = predict_from_csv(filepath) | |
return prediction | |
iface = gr.Interface(fn=interface_func, | |
inputs=gr.inputs.File(label="Upload CSV"), | |
outputs="text", | |
description="Upload a CSV file with the specified columns to predict.") | |
iface.launch() |