wissemkarous's picture
init
4f82165 verified
raw
history blame
1.29 kB
from tensorflow.keras.models import load_model
# Load your trained model
model = load_model('path_to_your_model.h5')
import pandas as pd
def predict_from_csv(file_path):
# Load the data
data = pd.read_csv(file_path)
# Assume your model expects data in a specific order and format
# Here we reorder the columns if necessary and handle any preprocessing like normalization
required_columns = ['CAN ID', 'RTR', 'DLC', 'Data1', 'Data2', 'Data3', 'Data4', 'Data5', 'Data6', 'Data7', 'Data8']
data = data[required_columns]
# Convert data to numpy array or the format your model expects
input_data = data.values
# Predict using the model
predictions = model.predict(input_data)
# Here, you could process the predictions to a more readable format if needed
return predictions
def interface_func(file_info):
# Get the path of the uploaded file
filepath = file_info["path"]
# Use the prediction function
prediction = predict_from_csv(filepath)
return prediction
iface = gr.Interface(fn=interface_func,
inputs=gr.inputs.File(label="Upload CSV"),
outputs="text",
description="Upload a CSV file with the specified columns to predict.")
iface.launch()