minor / streamlit.py
witcher's picture
Upload 10 files
d1f76c1 verified
import os
os.environ["TF_USE_LEGACY_KERAS"] = "1"
from keras.models import load_model
import streamlit as st
import numpy as np
from io import BytesIO
from PIL import Image
import tensorflow as tf
st.markdown(
"""
<style>
.reportview-container {
background: url('./bg.jpg');
background-size: cover;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown("# Bananas Maturity Classification ")
st.sidebar.markdown("# Main Page")
MODEL = load_model("./1")
CLASS_NAMES = ["Banana_G1", "Banana_G2", "Rotten"]
def read_file_as_image(data) -> np.ndarray:
image = np.array(Image.open(BytesIO(data)))
return image
def predict(
file,
):
image = read_file_as_image(file.read())
shape = image.shape
img_batch = np.expand_dims(image, 0)
# resize image to (256,256,3)
img_batch = tf.image.resize(img_batch, (256, 256))
prediction = MODEL.predict(img_batch)
predicted_class = CLASS_NAMES[np.argmax(prediction[0])]
confidence = np.max(prediction[0])
if predicted_class == "Banana_G2":
predicted_class = "Green Banana- not ripen"
elif predicted_class == "Banana_G1":
predicted_class = "Mature Banana -ripen"
else:
predicted_class = "Rotten Banana"
return {
'class': predicted_class,
'confidence': float(confidence)
}
st.write("Upload an image or capture one with your camera")
option = st.selectbox("Choose an option", ["Upload Image", "Capture Image"])
if option == "Upload Image":
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
result = predict(uploaded_file)
predicted_class = result['class']
confidence = result['confidence']
if predicted_class == "Green Banana- not ripen":
color = 'green'
elif predicted_class == "Mature Banana -ripen":
color = 'yellow'
else:
color = 'red'
st.markdown(
f'<p style="color:{color}; font-size:24px;">Predicted class: {predicted_class}, Confidence: {confidence:.2f}</p>',
unsafe_allow_html=True)