import streamlit as st import numpy as np from PIL import Image from keras.models import load_model # Load the pre-trained model for banana ripeness detection banana_model = load_model("trained model/best_model.h5") # Define class names for the banana disease detection class_names_disease = { 0: 'BUNCHY_TOP', 1: 'CORDANA', 2: 'PANAMA', 3: 'SIGATOKA' } # Define class names for the banana ripeness detection class_names_ripeness = ["Banana_G1", "Banana_G2", "Rotten"] model = load_model("trained model/best_model.h5") def preprocess_image(image): img = Image.open(image) img = img.resize((256, 256)) # Resize the image to the input size of the model img_array = np.array(img) img_array = img_array / 255.0 # Normalize the pixel values img_array = np.expand_dims(img_array, axis=0) # Add batch dimension return img_array def predict(image): img_array = preprocess_image(image) predictions = model.predict(img_array) predicted_class = np.argmax(predictions) predicted_label = class_names_disease[predicted_class] return predicted_label def predict_disease(uploaded_file): if uploaded_file is not None: predicted_label = predict(uploaded_file) return predicted_label def predict_ripeness(image): img_array = preprocess_image(image) predictions = banana_model.predict(img_array) predicted_class = np.argmax(predictions) predicted_label = class_names_ripeness[predicted_class] return predicted_label def main(): st.title("Banana Analysis App") st.write("Choose an option to analyze bananas") # Options for banana analysis analysis_option = st.radio("Choose an option", ["Banana Disease Detection", "Banana Ripeness Detection"]) # File uploader uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display the uploaded image st.image(uploaded_file, caption='Uploaded Image', use_column_width=True) if st.button("Analyze"): if analysis_option == "Banana Disease Detection": predicted_label = predict_disease(uploaded_file) st.success(f"Predicted disease: {predicted_label}") elif analysis_option == "Banana Ripeness Detection": predicted_label = predict_ripeness(uploaded_file) st.success(f"Predicted ripeness: {predicted_label}") if __name__ == '__main__': main()