|
import streamlit as st |
|
from dotenv import load_dotenv |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from htmltemp import css, bot_template, user_template |
|
from langchain.llms import HuggingFaceHub |
|
|
|
api_key = st.secrets['api_key'] |
|
|
|
def main(): |
|
load_dotenv() |
|
st.set_page_config(page_title="PDF Chatbot", page_icon="π") |
|
st.image("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png") |
|
|
|
if "conversation" not in st.session_state: |
|
st.session_state.conversation = None |
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = None |
|
|
|
st.header("Chat with your PDFs using Language Model") |
|
user_question = st.text_input("Ask a question about your documents:") |
|
if user_question: |
|
handle_userinput(user_question) |
|
|
|
with st.sidebar: |
|
st.subheader("Your PDFs") |
|
pdf_docs = st.file_uploader( |
|
"Upload your PDFs here", accept_multiple_files=True |
|
) |
|
if st.button("Process"): |
|
with st.spinner("Processing"): |
|
|
|
raw_text = get_pdf_text(pdf_docs) |
|
|
|
|
|
text_chunks = get_text_chunks(raw_text) |
|
|
|
|
|
vectorstore = get_vectorstore(text_chunks) |
|
|
|
|
|
st.session_state.conversation = get_conversation_chain(vectorstore) |
|
st.success("file uploaded") |
|
|
|
|
|
def get_pdf_text(pdf_docs): |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
|
|
def get_text_chunks(text): |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
separators=["\n\n", "\n", "."], chunk_size=900, chunk_overlap=200, length_function=len |
|
) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
|
|
def get_vectorstore(text_chunks): |
|
embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5") |
|
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) |
|
return vectorstore |
|
|
|
|
|
def get_conversation_chain(vectorstore): |
|
llm = HuggingFaceHub( |
|
repo_id="google/flan-t5-large", |
|
model_kwargs={"temperature": 0.5, "max_length": 1024}, |
|
huggingfacehub_api_token=api_key |
|
) |
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
conversation_chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, retriever=vectorstore.as_retriever(), memory=memory |
|
) |
|
return conversation_chain |
|
|
|
|
|
def handle_userinput(user_question): |
|
response = st.session_state.conversation({"question": user_question}) |
|
st.session_state.chat_history = response["chat_history"] |
|
|
|
for i, message in enumerate(st.session_state.chat_history): |
|
if i % 2 == 0: |
|
st.write( |
|
user_template.replace("{{MSG}}", message.content), |
|
unsafe_allow_html=True, |
|
) |
|
else: |
|
st.write( |
|
bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|