Spaces:
Paused
Paused
from torch.utils.data import DataLoader | |
import argparse | |
from omegaconf import OmegaConf | |
import pytorch_lightning as pl | |
from pytorch_lightning.loggers import WandbLogger | |
from pytorch_lightning.callbacks import ModelCheckpoint | |
from StructDiffusion.data.semantic_arrangement import SemanticArrangementDataset | |
from StructDiffusion.language.tokenizer import Tokenizer | |
from StructDiffusion.models.pl_models import ConditionalPoseDiffusionModel | |
def main(cfg): | |
pl.seed_everything(cfg.random_seed) | |
wandb_logger = WandbLogger(**cfg.WANDB) | |
wandb_logger.experiment.config.update(cfg) | |
checkpoint_callback = ModelCheckpoint() | |
tokenizer = Tokenizer(cfg.DATASET.vocab_dir) | |
vocab_size = tokenizer.get_vocab_size() | |
train_dataset = SemanticArrangementDataset(split="train", tokenizer=tokenizer, **cfg.DATASET) | |
valid_dataset = SemanticArrangementDataset(split="valid", tokenizer=tokenizer, **cfg.DATASET) | |
train_dataloader = DataLoader(train_dataset, shuffle=True, **cfg.DATALOADER) | |
valid_dataloader = DataLoader(valid_dataset, shuffle=False, **cfg.DATALOADER) | |
model = ConditionalPoseDiffusionModel(vocab_size, cfg.MODEL, cfg.LOSS, cfg.NOISE_SCHEDULE, cfg.OPTIMIZER) | |
trainer = pl.Trainer(logger=wandb_logger, callbacks=[checkpoint_callback], **cfg.TRAINER) | |
trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=valid_dataloader) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="train") | |
parser.add_argument("--base_config_file", help='base config yaml file', | |
default='../configs/base.yaml', | |
type=str) | |
parser.add_argument("--config_file", help='config yaml file', | |
default='../configs/conditional_pose_diffusion.yaml', | |
type=str) | |
args = parser.parse_args() | |
base_cfg = OmegaConf.load(args.base_config_file) | |
cfg = OmegaConf.load(args.config_file) | |
cfg = OmegaConf.merge(base_cfg, cfg) | |
main(cfg) |