import os import argparse import torch import trimesh import numpy as np import pytorch_lightning as pl import gradio as gr from omegaconf import OmegaConf import sys sys.path.append('./src') from StructDiffusion.data.semantic_arrangement_language_demo import SemanticArrangementDataset from StructDiffusion.language.tokenizer import Tokenizer from StructDiffusion.models.pl_models import ConditionalPoseDiffusionModel, PairwiseCollisionModel from StructDiffusion.diffusion.sampler import Sampler, SamplerV2 from StructDiffusion.diffusion.pose_conversion import get_struct_objs_poses from StructDiffusion.utils.files import get_checkpoint_path_from_dir from StructDiffusion.utils.rearrangement import show_pcs_with_trimesh, get_trimesh_scene_with_table import StructDiffusion.utils.transformations as tra from StructDiffusion.language.sentence_encoder import SentenceBertEncoder import StructDiffusion.utils.transformations as tra def move_pc_and_create_scene_simple(obj_xyzs, struct_pose, pc_poses_in_struct): device = obj_xyzs.device # obj_xyzs: B, N, P, 3 or 6 # struct_pose: B, 1, 4, 4 # pc_poses_in_struct: B, N, 4, 4 B, N, _, _ = pc_poses_in_struct.shape _, _, P, _ = obj_xyzs.shape current_pc_poses = torch.eye(4).repeat(B, N, 1, 1).to(device) # B, N, 4, 4 # print(torch.mean(obj_xyzs, dim=2).shape) current_pc_poses[:, :, :3, 3] = torch.mean(obj_xyzs[:, :, :, :3], dim=2) # B, N, 4, 4 current_pc_poses = current_pc_poses.reshape(B * N, 4, 4) # B x N, 4, 4 struct_pose = struct_pose.repeat(1, N, 1, 1) # B, N, 4, 4 struct_pose = struct_pose.reshape(B * N, 4, 4) # B x 1, 4, 4 pc_poses_in_struct = pc_poses_in_struct.reshape(B * N, 4, 4) # B x N, 4, 4 goal_pc_pose = struct_pose @ pc_poses_in_struct # B x N, 4, 4 # print("goal pc poses") # print(goal_pc_pose) goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_poses) # B x N, 4, 4 # # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix # transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2)) # new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1) # B x N, P, 3 # new_obj_xyzs[:, :, :3] = transpose.transform_points(new_obj_xyzs[:, :, :3]) # a verision that does not rely on pytorch3d new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1)[:, :, :3] # B x N, P, 3 new_obj_xyzs = torch.concat([new_obj_xyzs, torch.ones(B * N, P, 1).to(device)], dim=-1) # B x N, P, 4 new_obj_xyzs = torch.einsum('bij,bkj->bki', goal_pc_transform, new_obj_xyzs)[:, :, :3] # # B x N, P, 3 # put it back to B, N, P, 3 obj_xyzs[:, :, :, :3] = new_obj_xyzs.reshape(B, N, P, -1) return obj_xyzs class Infer_Wrapper: def __init__(self, args, cfg): self.num_pts = cfg.DATASET.num_pts # load pl.seed_everything(args.eval_random_seed) self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")) diffusion_checkpoint_path = get_checkpoint_path_from_dir(os.path.join(cfg.WANDB.save_dir, cfg.WANDB.project, args.diffusion_checkpoint_id, "checkpoints")) collision_checkpoint_path = get_checkpoint_path_from_dir(os.path.join(cfg.WANDB.save_dir, cfg.WANDB.project, args.collision_checkpoint_id, "checkpoints")) self.tokenizer = Tokenizer(cfg.DATASET.vocab_dir) # override ignore_rgb for visualization cfg.DATASET.ignore_rgb = False self.dataset = SemanticArrangementDataset(tokenizer=self.tokenizer, **cfg.DATASET) self.sampler = SamplerV2(ConditionalPoseDiffusionModel, diffusion_checkpoint_path, PairwiseCollisionModel, collision_checkpoint_path, self.device) self.sentence_encoder = SentenceBertEncoder() self.session_id_to_obj_xyzs = {} def visualize_scene(self, di, session_id): raw_datum = self.dataset.get_raw_data(di, inference_mode=True, shuffle_object_index=True) language_command = raw_datum["template_sentence"] obj_xyz = raw_datum["pcs"] scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in obj_xyz], [xyz[:, 3:] for xyz in obj_xyz], return_scene=True) scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2)) scene_filename = "./tmp_data/input_scene_{}.glb".format(session_id) scene.export(scene_filename) return language_command, scene_filename def build_scene(self, mesh_filename_1, x_1, y_1, z_1, ai_1, aj_1, ak_1, scale_1, mesh_filename_2, x_2, y_2, z_2, ai_2, aj_2, ak_2, scale_2, mesh_filename_3, x_3, y_3, z_3, ai_3, aj_3, ak_3, scale_3, mesh_filename_4, x_4, y_4, z_4, ai_4, aj_4, ak_4, scale_4, mesh_filename_5, x_5, y_5, z_5, ai_5, aj_5, ak_5, scale_5, session_id): object_list = [(mesh_filename_1, x_1, y_1, z_1, ai_1, aj_1, ak_1, scale_1), (mesh_filename_2, x_2, y_2, z_2, ai_2, aj_2, ak_2, scale_2), (mesh_filename_3, x_3, y_3, z_3, ai_3, aj_3, ak_3, scale_3), (mesh_filename_4, x_4, y_4, z_4, ai_4, aj_4, ak_4, scale_4), (mesh_filename_5, x_5, y_5, z_5, ai_5, aj_5, ak_5, scale_5)] scene = get_trimesh_scene_with_table() obj_xyzs = [] for mesh_filename, x, y, z, ai, aj, ak, scale in object_list: if mesh_filename is None: continue obj_mesh = trimesh.load(mesh_filename) obj_mesh.apply_scale(scale) z_min = obj_mesh.bounds[0, 2] tform = tra.euler_matrix(ai, aj, ak) tform[:3, 3] = [x, y, z - z_min] obj_mesh.apply_transform(tform) obj_xyz = obj_mesh.sample(self.num_pts) obj = trimesh.PointCloud(obj_xyz) scene.add_geometry(obj) obj_xyzs.append(obj_xyz) self.session_id_to_obj_xyzs[session_id] = obj_xyzs # scene.show() # obj_file = "/home/weiyu/data_drive/StructDiffusion/housekeep_custom_handpicked_small/visual/book_Eat_to_Live_The_Amazing_NutrientRich_Program_for_Fast_and_Sustained_Weight_Loss_Revised_Edition_Book_L/model.obj" # obj = trimesh.load(obj_file) # # scene = get_trimesh_scene_with_table() # scene.add_geometry(obj) # # scene.show() # raw_datum = self.dataset.get_raw_data(di, inference_mode=True, shuffle_object_index=True) # language_command = raw_datum["template_sentence"] # # obj_xyz = raw_datum["pcs"] # scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in obj_xyz], [xyz[:, 3:] for xyz in obj_xyz], # return_scene=True) scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi / 2)) scene_filename = "./tmp_data/input_scene_{}.glb".format(session_id) scene.export(scene_filename) return scene_filename # return language_command, scene_filename def infer(self, language_command, session_id, progress=gr.Progress()): obj_xyzs = self.session_id_to_obj_xyzs[session_id] sentence_embedding = self.sentence_encoder.encode([language_command]).flatten() raw_datum = self.dataset.build_data_from_xyzs(obj_xyzs, sentence_embedding) datum = self.dataset.convert_to_tensors(raw_datum, self.tokenizer, use_sentence_embedding=True) batch = self.dataset.single_datum_to_batch(datum, args.num_samples, self.device, inference_mode=True) num_poses = raw_datum["num_goal_poses"] struct_pose, pc_poses_in_struct = self.sampler.sample(batch, num_poses, args.num_elites, args.discriminator_batch_size) new_obj_xyzs = move_pc_and_create_scene_simple(batch["pcs"][:args.num_elites], struct_pose, pc_poses_in_struct) # vis vis_obj_xyzs = new_obj_xyzs[:3] if torch.is_tensor(vis_obj_xyzs): if vis_obj_xyzs.is_cuda: vis_obj_xyzs = vis_obj_xyzs.detach().cpu() vis_obj_xyzs = vis_obj_xyzs.numpy() vis_obj_xyz = vis_obj_xyzs[0] # scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz], return_scene=True) scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], obj_rgbs=None, return_scene=True) # scene.show() scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2)) scene_filename = "./tmp_data/output_scene_{}.glb".format(session_id) scene.export(scene_filename) # pc_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/pc.glb" # scene_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/scene.glb" # # vis_obj_xyz = vis_obj_xyz.reshape(-1, 6) # vis_pc = trimesh.PointCloud(vis_obj_xyz[:, :3], colors=np.concatenate([vis_obj_xyz[:, 3:] * 255, np.ones([vis_obj_xyz.shape[0], 1]) * 255], axis=-1)) # vis_pc.export(pc_filename) # # scene = trimesh.Scene() # # add the coordinate frame first # # geom = trimesh.creation.axis(0.01) # # scene.add_geometry(geom) # table = trimesh.creation.box(extents=[1.0, 1.0, 0.02]) # table.apply_translation([0.5, 0, -0.01]) # table.visual.vertex_colors = [150, 111, 87, 125] # scene.add_geometry(table) # # bounds = trimesh.creation.box(extents=[4.0, 4.0, 4.0]) # # bounds = trimesh.creation.icosphere(subdivisions=3, radius=3.1) # # bounds.apply_translation([0, 0, 0]) # # bounds.visual.vertex_colors = [30, 30, 30, 30] # # scene.add_geometry(bounds) # # RT_4x4 = np.array([[-0.39560353822208355, -0.9183993826406329, 0.006357240869497738, 0.2651463080169481], # # [-0.797630370081598, 0.3401340617616391, -0.4980909683511864, 0.2225696480721997], # # [0.45528412367406523, -0.2021172778236285, -0.8671014777611122, 0.9449050652025951], # # [0.0, 0.0, 0.0, 1.0]]) # # RT_4x4 = np.linalg.inv(RT_4x4) # # RT_4x4 = RT_4x4 @ np.diag([1, -1, -1, 1]) # # scene.camera_transform = RT_4x4 # # mesh_list = trimesh.util.concatenate(scene.dump()) # print(mesh_list) # trimesh.io.export.export_mesh(mesh_list, scene_filename, file_type='obj') return scene_filename args = OmegaConf.create() args.base_config_file = "./configs/base.yaml" args.config_file = "./configs/conditional_pose_diffusion_language.yaml" args.diffusion_checkpoint_id = "ConditionalPoseDiffusionLanguage" args.collision_checkpoint_id = "CollisionDiscriminator" args.eval_random_seed = 42 args.num_samples = 50 args.num_elites = 3 args.discriminator_batch_size = 10 base_cfg = OmegaConf.load(args.base_config_file) cfg = OmegaConf.load(args.config_file) cfg = OmegaConf.merge(base_cfg, cfg) infer_wrapper = Infer_Wrapper(args, cfg) # # version 1 # demo = gr.Blocks(theme=gr.themes.Soft()) # with demo: # gr.Markdown("
StructDiffusion Demo
") # # font-size:18px # gr.Markdown("StructDiffusion combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals.
Website | Code
StructDiffusion Demo
") # font-size:18px gr.Markdown("StructDiffusion combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals.
Website | Code