File size: 7,894 Bytes
9e93574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import streamlit as st
import pandas as pd
from sqlalchemy import create_engine
from dotenv import load_dotenv
import yfinance as yf
import plotly.graph_objs as go
import datetime
from datetime import timedelta
import os
from pandas.tseries.offsets import BDay
from getDailyData import get_daily
load_dotenv()

# Get the data for daily first
data_daily, df_final_daily, final_row_daily = get_daily()

engine = create_engine(
        f"mysql+mysqldb://{os.getenv('DATABASE_USERNAME')}:" \
        f"{os.getenv('DATABASE_PASSWORD')}@{os.getenv('DATABASE_HOST')}/" \
        f"{os.getenv('DATABASE')}?ssl_ca=ca-certificates.crt&ssl_mode=VERIFY_IDENTITY"
    )

q = '''SELECT * FROM results where AsOf > '2022-06-01'

'''

df_all_results = pd.read_sql_query(q, con=engine.connect())
df_all_results['AsOf'] = df_all_results['AsOf'].dt.tz_localize('America/New_York')

# Get historical data
spx = yf.Ticker('^GSPC')
prices = spx.history(interval='30m', start=df_all_results.index.min(), ) 
df_all_results2 = df_all_results.merge(prices.reset_index()[['Datetime','Open','High','Low','Close']], left_on = 'AsOf', right_on = 'Datetime')
df_all_results2['Color'] = df_all_results2['Predicted'].apply(lambda x: 'green' if x >=0.6 else 'red' if x < 0.4 else 'yellow')
df_all_results2['PredDir'] = df_all_results2['Predicted'].apply(lambda x: 'Up' if x >=0.6 else 'Down' if x < 0.4 else 'Neutral')

date_select = datetime.datetime.today() - BDay(5)

if 'date_select' not in st.session_state:
    st.session_state.date_select = date_select

date_select = st.date_input(
    'Select data for chart',
    value=date_select,
    min_value=data_daily.index[0],
    max_value=data_daily.index[-1]
)

# Load your data
df1 = df_all_results2.set_index('AsOf')
df1 = df1.loc[df1.index > str(date_select)]

dts = df1.groupby(df1.index.date).head(1).reset_index()['AsOf']
daily_closes = data_daily.loc[df1.index.date, 'PrevClose'].drop_duplicates().reset_index()
daily_closes['FirstBar'] = dts
levels = data_daily.loc[df1.index.date, ['H1','H2','L1','L2','Open']].drop_duplicates().reset_index()
levels['FirstBar'] = dts

# Create a candlestick trace with custom colors based on the CandleColor column
candlestick_trace = go.Candlestick(
    x=df1.index,
    open=df1['Open'],
    high=df1['High'],
    low=df1['Low'],
    close=df1['Close'],
    increasing_fillcolor='#3399ff',
    decreasing_fillcolor='#ff5f5f',
    increasing_line_color='#3399ff',  # Color for decreasing candles
    decreasing_line_color='#ff5f5f',  # Color for decreasing candles
    name='30m'
)

df_up = df1.loc[df1['PredDir']=='Up']
df_down = df1.loc[df1['PredDir']=='Down']
df_neutral = df1.loc[df1['PredDir']=='Neutral']

scatter_up = go.Scatter(
    x=df_up.index,
    y=df_up['High'] * 1.001,
    mode='markers',
    marker=dict(size=8),
    marker_color=df_up['Color'],
    marker_symbol='triangle-up',
    name='Up'
)

scatter_down = go.Scatter(
    x=df_down.index,
    y=df_down['Low'] * 0.999,
    mode='markers',
    marker=dict(size=8),
    marker_color=df_down['Color'],
    marker_symbol='triangle-down',
    name='Down'
)

scatter_neut = go.Scatter(
    x=df_neutral.index,
    y=df_neutral[['Open','High','Low','Close']].mean(axis=1),
    mode='markers',
    marker=dict(size=7),
    marker_color=df_neutral['Color'],
    marker_symbol='diamond-open',
    name='Neutral'
)

# Create a layout
layout = go.Layout(
    title=dict(text='OHLC Chart with Predictions', xanchor='center', yanchor='top', y=0.9,x=0.5),

    xaxis=dict(title='Date'),
    yaxis=dict(title='Price'),
    template='plotly_dark',
    xaxis_rangeslider_visible=False,
    width=750,
    height=500
)

# Create a figure
fig = go.Figure(data=[candlestick_trace, scatter_up, scatter_neut, scatter_down], layout=layout)

fig.update_xaxes(
        rangebreaks=[
            # NOTE: Below values are bound (not single values), ie. hide x to y
            dict(bounds=["sat", "mon"]),  # hide weekends, eg. hide sat to before mon
            dict(bounds=[16, 9.5], pattern="hour"),  # hide hours outside of 9.30am-4pm
            # dict(values=["2019-12-25", "2020-12-24"])  # hide holidays (Christmas and New Year's, etc)
        ]
    )

fig.update_layout(
    shapes = [dict(
        x0=d-timedelta(minutes=15), x1=d-timedelta(minutes=15), y0=0, y1=1, xref='x', yref='paper',
        line_width=0.5, opacity=0.5, line_dash='dot') for d in df1.loc[df1['ModelNum']==0].index],
    legend=dict(yanchor="top", y=1.05, xanchor="center", x=0.5, orientation='h'),
    margin=dict(l=20, r=20, t=80, b=20)
)


# Define the y-positions for your horizontal lines
pairs = [(start, level) for start, level in zip(daily_closes['FirstBar'], daily_closes['PrevClose'])]

# Add horizontal lines to the figure
for pair in pairs:
    start = pair[0] 
    end = start + BDay(1) - timedelta(minutes=15)
    level = pair[1]
    fig.add_shape(
        type="line",
        x0=start,
        x1=end,
        y0=level,
        y1=level,
        xref='x',
        yref='y',
        line=dict(
            width=0.5,
            dash="dot",
        ),
    )

for start in levels['FirstBar']:
    end = start + BDay(1)-timedelta(minutes=15)
    vals = levels.loc[levels['FirstBar']==start, ['H1','H2','L1','L2','Open']].values[0]
    H1 = vals[0]
    H2 = vals[1]
    L1 = vals[2]
    L2 = vals[3]
    Open = vals[4]
    # Plot H1
    fig.add_shape(
        type="line",
        x0=start,
        x1=end,
        y0=H1,
        y1=H1,
        xref='x',
        yref='y',
        line=dict(
            width=0.5,
            dash="solid",
            color="#ff5f5f"
            ),
        )
    # Plot H2
    fig.add_shape(
        type="line",
        x0=start,
        x1=end,
        y0=H2,
        y1=H2,
        xref='x',
        yref='y',
        line=dict(
            width=1,
            dash="solid",
            color="#ff5f5f"
            ),
        )
    # Plot L1
    fig.add_shape(
        type="line",
        x0=start,
        x1=end,
        y0=L1,
        y1=L1,
        xref='x',
        yref='y',
        line=dict(
            width=0.5,
            dash="solid",
            color="#3399ff"
            ),
        )
    # Plot L2
    fig.add_shape(
        type="line",
        x0=start,
        x1=end,
        y0=L2,
        y1=L2,
        xref='x',
        yref='y',
        line=dict(
            width=1,
            dash="solid",
            color="#3399ff"
            ),
        )
    # Plot Open
    fig.add_shape(
        type="line",
        x0=start,
        x1=end,
        y0=Open,
        y1=Open,
        xref='x',
        yref='y',
        line=dict(
            width=1,
            dash="solid",
            color="#cccccc"
            ),
        )

fig.for_each_xaxis(lambda x: x.update(showgrid=False))
fig.for_each_yaxis(lambda x: x.update(showgrid=False))

# Show the figure
st.plotly_chart(fig, use_container_width=True)

# Important levels
df_levels = pd.DataFrame(levels[['H2','H1','Open','L1','L2']].iloc[-1]).round(2)
df_levels.columns = ['Levels']
df_levels.astype(float).round(2)

# For historical reference
df_all_results['Symbol'] = df_all_results['Predicted'].apply(lambda x: '🟩' if x >=0.6 else 'πŸŸ₯' if x < 0.4 else '🟨')
today_df = df_all_results[['AsOf','Symbol','Predicted','CalibPredicted','Pvalue']].tail(13)[::-1]
today_df = today_df.set_index('AsOf', drop=True)
df_show = (today_df.style
           .format(formatter={
               'Predicted':'{:.1%}',
               'CalibPredicted':'{:.1%}',
               'Pvalue':'{:.2f}',
               })
)


st.dataframe(df_levels.T,use_container_width=True)
st.dataframe(df_show,use_container_width=True)