gamedayspx-monitor / getIntraData.py
wnstnb's picture
DB functions and auto handle time of day
c219cd7
import pandas as pd
import yfinance as yf
import datetime
from getDailyData import data_start_date
from dbConn import engine
def get_intra(periods_30m = 1):
'''
Method to get historical 30 minute data and append live data to it, if exists.
'''
query = f'''SELECT
spx30.Datetime AS Datetime,
spx30.Open AS Open30,
spx30.High AS High30,
spx30.Low AS Low30,
spx30.Close AS Close30,
vix30.Open AS Open_VIX30,
vix30.High AS High_VIX30,
vix30.Low AS Low_VIX30,
vix30.Close AS Close_VIX30,
vvix30.Open AS Open_VVIX30,
vvix30.High AS High_VVIX30,
vvix30.Low AS Low_VVIX30,
vvix30.Close AS Close_VVIX30
FROM
SPX_full_30min AS spx30
LEFT JOIN
VIX_full_30min AS vix30 ON spx30.Datetime = vix30.Datetime AND vix30.Datetime > '{data_start_date}'
LEFT JOIN
VVIX_full_30min AS vvix30 ON spx30.Datetime = vvix30.Datetime AND vvix30.Datetime > '{data_start_date}'
WHERE
spx30.Datetime > '{data_start_date}'
'''
df_30m = pd.read_sql_query(sql=query, con=engine.connect())
df_30m['Datetime'] = df_30m['Datetime'].dt.tz_localize('America/New_York')
df_30m = df_30m.set_index('Datetime',drop=True)
# Get incremental date
last_date = df_30m.index.date[-1]
last_date = last_date + datetime.timedelta(days=1)
# Get incremental data for each index
spx1 = yf.Ticker('^GSPC')
vix1 = yf.Ticker('^VIX')
vvix1 = yf.Ticker('^VVIX')
yfp = spx1.history(start=last_date, interval='30m')
yf_vix = vix1.history(start=last_date, interval='30m')
yf_vvix = vvix1.history(start=last_date, interval='30m')
if len(yfp) > 0:
# Convert indexes to EST if not already
for _df in [yfp, yf_vix, yf_vvix]:
if (_df.index.tz.zone != 'America/New_York') or (type(_df.index) != pd.DatetimeIndex):
_df['Datetime'] = pd.to_datetime(_df.index)
_df['Datetime'] = _df['Datetime'].dt.tz_convert('America/New_York')
_df.set_index('Datetime', inplace=True)
# Concat them
df_inc = pd.concat([
yfp[['Open','High','Low','Close']],
yf_vix[['Open','High','Low','Close']],
yf_vvix[['Open','High','Low','Close']]
], axis=1)
df_inc.columns = df_30m.columns
df_inc = df_inc.loc[
(df_inc.index.time >= datetime.time(9,30)) & (df_inc.index.time < datetime.time(16,00))
]
df_30m = pd.concat([df_30m, df_inc])
else:
df_30m = df_30m.copy()
df_30m = df_30m.loc[
(df_30m.index.time >= datetime.time(9,30)) & (df_30m.index.time < datetime.time(16,00))
]
df_30m['dt'] = df_30m.index.date
df_30m = df_30m.groupby('dt').head(periods_30m)
df_30m = df_30m.set_index('dt',drop=True)
df_30m.index.name = 'Datetime'
df_30m['SPX30IntraPerf'] = (df_30m['Close30'] / df_30m['Close30'].shift(1)) - 1
df_30m['VIX30IntraPerf'] = (df_30m['Close_VIX30'] / df_30m['Close_VIX30'].shift(1)) - 1
df_30m['VVIX30IntraPerf'] = (df_30m['Close_VVIX30'] / df_30m['Close_VVIX30'].shift(1)) - 1
opens_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'Open' in c]].head(1)
highs_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'High' in c]].max()
lows_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'Low' in c]].min()
closes_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'Close' in c]].tail(1)
spx_intra = df_30m.groupby('Datetime')['SPX30IntraPerf'].tail(1)
vix_intra = df_30m.groupby('Datetime')['VIX30IntraPerf'].tail(1)
vvix_intra = df_30m.groupby('Datetime')['VVIX30IntraPerf'].tail(1)
df_intra = pd.concat([opens_intra, highs_intra, lows_intra, closes_intra, spx_intra, vix_intra, vvix_intra], axis=1)
return df_intra