wnstnb commited on
Commit
a94f457
·
1 Parent(s): ab52efb
Files changed (2) hide show
  1. app.py +270 -0
  2. requirements.txt +2 -1
app.py ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sqlalchemy import create_engine
4
+ from dotenv import load_dotenv
5
+ import yfinance as yf
6
+ import plotly.graph_objs as go
7
+ import datetime
8
+ from datetime import timedelta
9
+ import os
10
+ from pandas.tseries.offsets import BDay
11
+ from getDailyData import get_daily
12
+ from streamlit_lightweight_charts import renderLightweightCharts
13
+ load_dotenv()
14
+
15
+ st.title('🎮 GamedaySPX Data Monitor')
16
+
17
+ # Get the data for daily first
18
+ data_daily, df_final_daily, final_row_daily = get_daily()
19
+
20
+ # Get historical data
21
+ spx = yf.Ticker('^GSPC')
22
+ prices = spx.history(interval='30m')
23
+
24
+ date_select = st.date_input(
25
+ 'Select data for chart',
26
+ value=datetime.datetime.today() - BDay(5),
27
+ min_value=prices.index[0],
28
+ )
29
+
30
+ engine = create_engine(
31
+ f"mysql+mysqldb://{os.getenv('DATABASE_USERNAME')}:" \
32
+ f"{os.getenv('DATABASE_PASSWORD')}@{os.getenv('DATABASE_HOST')}/" \
33
+ f"{os.getenv('DATABASE')}?ssl_ca=ca-certificates.crt&ssl_mode=VERIFY_IDENTITY"
34
+ )
35
+
36
+ q = f'''SELECT AsOf, Predicted, CalibPredicted, Pvalue, ModelNum FROM results where AsOf >= '{date_select}'
37
+ '''
38
+
39
+ df_all_results = pd.read_sql_query(q, con=engine.connect())
40
+ df_all_results['AsOf'] = df_all_results['AsOf'].dt.tz_localize('America/New_York')
41
+
42
+
43
+ df_all_results2 = df_all_results.merge(prices.reset_index()[['Datetime','Open','High','Low','Close']], left_on = 'AsOf', right_on = 'Datetime')
44
+ df_all_results2['Color'] = df_all_results2['Predicted'].apply(lambda x: 'green' if x >=0.6 else 'red' if x < 0.4 else 'yellow')
45
+ df_all_results2['PredDir'] = df_all_results2['Predicted'].apply(lambda x: 'Up' if x >=0.6 else 'Down' if x < 0.4 else 'Neutral')
46
+
47
+
48
+ # Load your data
49
+ df1 = df_all_results2.set_index('AsOf')
50
+ df1 = df1.loc[df1.index > str(date_select)]
51
+
52
+ dts = df1.groupby(df1.index.date).head(1).reset_index()['AsOf']
53
+ daily_closes = data_daily.loc[df1.index.date, 'PrevClose'].drop_duplicates().reset_index()
54
+ daily_closes['FirstBar'] = dts
55
+ levels = data_daily.loc[df1.index.date, ['H1','H2','L1','L2','Open']].drop_duplicates().reset_index()
56
+ levels['FirstBar'] = dts
57
+
58
+ # Create a candlestick trace with custom colors based on the CandleColor column
59
+ candlestick_trace = go.Candlestick(
60
+ x=df1.index,
61
+ open=df1['Open'],
62
+ high=df1['High'],
63
+ low=df1['Low'],
64
+ close=df1['Close'],
65
+ increasing_fillcolor='#3399ff',
66
+ decreasing_fillcolor='#ff5f5f',
67
+ increasing_line_color='#3399ff', # Color for decreasing candles
68
+ decreasing_line_color='#ff5f5f', # Color for decreasing candles
69
+ name='30m'
70
+ )
71
+
72
+ df_up = df1.loc[df1['PredDir']=='Up']
73
+ df_down = df1.loc[df1['PredDir']=='Down']
74
+ df_neutral = df1.loc[df1['PredDir']=='Neutral']
75
+
76
+ scatter_up = go.Scatter(
77
+ x=df_up.index,
78
+ y=df_up['High'] * 1.001,
79
+ mode='markers',
80
+ marker=dict(size=8),
81
+ marker_color=df_up['Color'],
82
+ marker_symbol='triangle-up',
83
+ name='Up'
84
+ )
85
+
86
+ scatter_down = go.Scatter(
87
+ x=df_down.index,
88
+ y=df_down['Low'] * 0.999,
89
+ mode='markers',
90
+ marker=dict(size=8),
91
+ marker_color=df_down['Color'],
92
+ marker_symbol='triangle-down',
93
+ name='Down'
94
+ )
95
+
96
+ scatter_neut = go.Scatter(
97
+ x=df_neutral.index,
98
+ y=df_neutral[['Open','High','Low','Close']].mean(axis=1),
99
+ mode='markers',
100
+ marker=dict(size=7),
101
+ marker_color=df_neutral['Color'],
102
+ marker_symbol='diamond-open',
103
+ name='Neutral'
104
+ )
105
+
106
+ # Create a layout
107
+ layout = go.Layout(
108
+ title=dict(text='OHLC Chart with Predictions', xanchor='center', yanchor='top', y=0.9,x=0.5),
109
+
110
+ xaxis=dict(title='Date'),
111
+ yaxis=dict(title='Price'),
112
+ template='plotly_dark',
113
+ xaxis_rangeslider_visible=False,
114
+ width=750,
115
+ height=500
116
+ )
117
+
118
+ # Create a figure
119
+ fig = go.Figure(data=[candlestick_trace, scatter_up, scatter_neut, scatter_down], layout=layout)
120
+
121
+ fig.update_xaxes(
122
+ rangebreaks=[
123
+ # NOTE: Below values are bound (not single values), ie. hide x to y
124
+ dict(bounds=["sat", "mon"]), # hide weekends, eg. hide sat to before mon
125
+ dict(bounds=[16, 9.5], pattern="hour"), # hide hours outside of 9.30am-4pm
126
+ # dict(values=["2019-12-25", "2020-12-24"]) # hide holidays (Christmas and New Year's, etc)
127
+ ]
128
+ )
129
+
130
+ fig.update_layout(
131
+ shapes = [dict(
132
+ x0=d-timedelta(minutes=15), x1=d-timedelta(minutes=15), y0=0, y1=1, xref='x', yref='paper',
133
+ line_width=0.5, opacity=0.5, line_dash='dot') for d in df1.loc[df1['ModelNum']==0].index],
134
+ legend=dict(yanchor="top", y=1.05, xanchor="center", x=0.5, orientation='h'),
135
+ margin=dict(l=20, r=20, t=80, b=20)
136
+ )
137
+
138
+
139
+ # Define the y-positions for your horizontal lines
140
+ pairs = [(start, level) for start, level in zip(daily_closes['FirstBar'], daily_closes['PrevClose'])]
141
+
142
+ # Add horizontal lines to the figure
143
+ for pair in pairs:
144
+ start = pair[0]
145
+ end = start + BDay(1) - timedelta(minutes=15)
146
+ level = pair[1]
147
+ fig.add_shape(
148
+ type="line",
149
+ x0=start,
150
+ x1=end,
151
+ y0=level,
152
+ y1=level,
153
+ xref='x',
154
+ yref='y',
155
+ line=dict(
156
+ width=0.5,
157
+ dash="dot",
158
+ ),
159
+ )
160
+
161
+ for start in levels['FirstBar']:
162
+ end = start + BDay(1)-timedelta(minutes=15)
163
+ vals = levels.loc[levels['FirstBar']==start, ['H1','H2','L1','L2','Open']].values[0]
164
+ H1 = vals[0]
165
+ H2 = vals[1]
166
+ L1 = vals[2]
167
+ L2 = vals[3]
168
+ Open = vals[4]
169
+ # Plot H1
170
+ fig.add_shape(
171
+ type="line",
172
+ x0=start,
173
+ x1=end,
174
+ y0=H1,
175
+ y1=H1,
176
+ xref='x',
177
+ yref='y',
178
+ line=dict(
179
+ width=0.5,
180
+ dash="solid",
181
+ color="#ff5f5f"
182
+ ),
183
+ )
184
+ # Plot H2
185
+ fig.add_shape(
186
+ type="line",
187
+ x0=start,
188
+ x1=end,
189
+ y0=H2,
190
+ y1=H2,
191
+ xref='x',
192
+ yref='y',
193
+ line=dict(
194
+ width=1,
195
+ dash="solid",
196
+ color="#ff5f5f"
197
+ ),
198
+ )
199
+ # Plot L1
200
+ fig.add_shape(
201
+ type="line",
202
+ x0=start,
203
+ x1=end,
204
+ y0=L1,
205
+ y1=L1,
206
+ xref='x',
207
+ yref='y',
208
+ line=dict(
209
+ width=0.5,
210
+ dash="solid",
211
+ color="#3399ff"
212
+ ),
213
+ )
214
+ # Plot L2
215
+ fig.add_shape(
216
+ type="line",
217
+ x0=start,
218
+ x1=end,
219
+ y0=L2,
220
+ y1=L2,
221
+ xref='x',
222
+ yref='y',
223
+ line=dict(
224
+ width=1,
225
+ dash="solid",
226
+ color="#3399ff"
227
+ ),
228
+ )
229
+ # Plot Open
230
+ fig.add_shape(
231
+ type="line",
232
+ x0=start,
233
+ x1=end,
234
+ y0=Open,
235
+ y1=Open,
236
+ xref='x',
237
+ yref='y',
238
+ line=dict(
239
+ width=1,
240
+ dash="solid",
241
+ color="#cccccc"
242
+ ),
243
+ )
244
+
245
+ fig.for_each_xaxis(lambda x: x.update(showgrid=False))
246
+ fig.for_each_yaxis(lambda x: x.update(showgrid=False))
247
+
248
+ # Show the figure
249
+ st.plotly_chart(fig, use_container_width=True)
250
+
251
+ # Important levels
252
+ df_levels = pd.DataFrame(levels[['H2','H1','Open','L1','L2']].iloc[-1]).round(2)
253
+ df_levels.columns = ['Levels']
254
+ df_levels.astype(float).round(2)
255
+
256
+ # For historical reference
257
+ df_all_results['Symbol'] = df_all_results['Predicted'].apply(lambda x: '🟩' if x >=0.6 else '🟥' if x < 0.4 else '🟨')
258
+ today_df = df_all_results[['AsOf','Symbol','Predicted','CalibPredicted','Pvalue']].tail(13)[::-1]
259
+ today_df = today_df.set_index('AsOf', drop=True)
260
+ df_show = (today_df.style
261
+ .format(formatter={
262
+ 'Predicted':'{:.1%}',
263
+ 'CalibPredicted':'{:.1%}',
264
+ 'Pvalue':'{:.2f}',
265
+ })
266
+ )
267
+
268
+
269
+ st.dataframe(df_levels.T,use_container_width=True)
270
+ st.dataframe(df_show,use_container_width=True)
requirements.txt CHANGED
@@ -15,4 +15,5 @@ sqlalchemy<2.0
15
  python-dotenv
16
  scikit-learn
17
  plotly
18
- streamlit
 
 
15
  python-dotenv
16
  scikit-learn
17
  plotly
18
+ streamlit
19
+ streamlit-lightweight-charts