Spaces:
Running
on
Zero
Running
on
Zero
# Modified from: | |
# taming-transformers: https://github.com/CompVis/taming-transformers | |
# stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py | |
# maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py | |
import functools | |
import math | |
import torch | |
import torch.nn as nn | |
try: | |
from kornia.filters import filter2d | |
except: | |
pass | |
################################################################################# | |
# PatchGAN # | |
################################################################################# | |
class PatchGANDiscriminator(nn.Module): | |
"""Defines a PatchGAN discriminator as in Pix2Pix | |
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
""" | |
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): | |
"""Construct a PatchGAN discriminator | |
Parameters: | |
input_nc (int) -- the number of channels in input images | |
ndf (int) -- the number of filters in the last conv layer | |
n_layers (int) -- the number of conv layers in the discriminator | |
norm_layer -- normalization layer | |
""" | |
super(PatchGANDiscriminator, self).__init__() | |
if not use_actnorm: | |
norm_layer = nn.BatchNorm2d | |
else: | |
norm_layer = ActNorm | |
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters | |
use_bias = norm_layer.func != nn.BatchNorm2d | |
else: | |
use_bias = norm_layer != nn.BatchNorm2d | |
kw = 4 | |
padw = 1 | |
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] | |
nf_mult = 1 | |
nf_mult_prev = 1 | |
for n in range(1, n_layers): # gradually increase the number of filters | |
nf_mult_prev = nf_mult | |
nf_mult = min(2 ** n, 8) | |
sequence += [ | |
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
nf_mult_prev = nf_mult | |
nf_mult = min(2 ** n_layers, 8) | |
sequence += [ | |
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
norm_layer(ndf * nf_mult), | |
nn.LeakyReLU(0.2, True) | |
] | |
sequence += [ | |
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map | |
self.main = nn.Sequential(*sequence) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
nn.init.normal_(module.weight.data, 0.0, 0.02) | |
elif isinstance(module, nn.BatchNorm2d): | |
nn.init.normal_(module.weight.data, 1.0, 0.02) | |
nn.init.constant_(module.bias.data, 0) | |
def forward(self, input): | |
"""Standard forward.""" | |
return self.main(input) | |
class ActNorm(nn.Module): | |
def __init__(self, num_features, logdet=False, affine=True, | |
allow_reverse_init=False): | |
assert affine | |
super().__init__() | |
self.logdet = logdet | |
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) | |
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) | |
self.allow_reverse_init = allow_reverse_init | |
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) | |
def initialize(self, input): | |
with torch.no_grad(): | |
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) | |
mean = ( | |
flatten.mean(1) | |
.unsqueeze(1) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
.permute(1, 0, 2, 3) | |
) | |
std = ( | |
flatten.std(1) | |
.unsqueeze(1) | |
.unsqueeze(2) | |
.unsqueeze(3) | |
.permute(1, 0, 2, 3) | |
) | |
self.loc.data.copy_(-mean) | |
self.scale.data.copy_(1 / (std + 1e-6)) | |
def forward(self, input, reverse=False): | |
if reverse: | |
return self.reverse(input) | |
if len(input.shape) == 2: | |
input = input[:,:,None,None] | |
squeeze = True | |
else: | |
squeeze = False | |
_, _, height, width = input.shape | |
if self.training and self.initialized.item() == 0: | |
self.initialize(input) | |
self.initialized.fill_(1) | |
h = self.scale * (input + self.loc) | |
if squeeze: | |
h = h.squeeze(-1).squeeze(-1) | |
if self.logdet: | |
log_abs = torch.log(torch.abs(self.scale)) | |
logdet = height*width*torch.sum(log_abs) | |
logdet = logdet * torch.ones(input.shape[0]).to(input) | |
return h, logdet | |
return h | |
def reverse(self, output): | |
if self.training and self.initialized.item() == 0: | |
if not self.allow_reverse_init: | |
raise RuntimeError( | |
"Initializing ActNorm in reverse direction is " | |
"disabled by default. Use allow_reverse_init=True to enable." | |
) | |
else: | |
self.initialize(output) | |
self.initialized.fill_(1) | |
if len(output.shape) == 2: | |
output = output[:,:,None,None] | |
squeeze = True | |
else: | |
squeeze = False | |
h = output / self.scale - self.loc | |
if squeeze: | |
h = h.squeeze(-1).squeeze(-1) | |
return h | |
################################################################################# | |
# StyleGAN # | |
################################################################################# | |
class StyleGANDiscriminator(nn.Module): | |
def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256): | |
super().__init__() | |
channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256 * channel_multiplier, | |
128: 128 * channel_multiplier, | |
256: 64 * channel_multiplier, | |
512: 32 * channel_multiplier, | |
1024: 16 * channel_multiplier, | |
} | |
log_size = int(math.log(image_size, 2)) | |
in_channel = channels[image_size] | |
blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
blocks.append(DiscriminatorBlock(in_channel, out_channel)) | |
in_channel = out_channel | |
self.blocks = nn.ModuleList(blocks) | |
self.final_conv = nn.Sequential( | |
nn.Conv2d(in_channel, channels[4], 3, padding=1), | |
leaky_relu(), | |
) | |
self.final_linear = nn.Sequential( | |
nn.Linear(channels[4] * 4 * 4, channels[4]), | |
leaky_relu(), | |
nn.Linear(channels[4], 1) | |
) | |
def forward(self, x): | |
for block in self.blocks: | |
x = block(x) | |
x = self.final_conv(x) | |
x = x.view(x.shape[0], -1) | |
x = self.final_linear(x) | |
return x | |
class DiscriminatorBlock(nn.Module): | |
def __init__(self, input_channels, filters, downsample=True): | |
super().__init__() | |
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1)) | |
self.net = nn.Sequential( | |
nn.Conv2d(input_channels, filters, 3, padding=1), | |
leaky_relu(), | |
nn.Conv2d(filters, filters, 3, padding=1), | |
leaky_relu() | |
) | |
self.downsample = nn.Sequential( | |
Blur(), | |
nn.Conv2d(filters, filters, 3, padding = 1, stride = 2) | |
) if downsample else None | |
def forward(self, x): | |
res = self.conv_res(x) | |
x = self.net(x) | |
if exists(self.downsample): | |
x = self.downsample(x) | |
x = (x + res) * (1 / math.sqrt(2)) | |
return x | |
class Blur(nn.Module): | |
def __init__(self): | |
super().__init__() | |
f = torch.Tensor([1, 2, 1]) | |
self.register_buffer('f', f) | |
def forward(self, x): | |
f = self.f | |
f = f[None, None, :] * f [None, :, None] | |
return filter2d(x, f, normalized=True) | |
def leaky_relu(p=0.2): | |
return nn.LeakyReLU(p, inplace=True) | |
def exists(val): | |
return val is not None |