Spaces:
Running
on
Zero
Running
on
Zero
# Modified from: | |
# stylegan2-pytorch: https://github.com/lucidrains/stylegan2-pytorch/blob/master/stylegan2_pytorch/stylegan2_pytorch.py | |
# stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py | |
# maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py | |
import math | |
import torch | |
import torch.nn as nn | |
try: | |
from kornia.filters import filter2d | |
except: | |
pass | |
class Discriminator(nn.Module): | |
def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256): | |
super().__init__() | |
channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256 * channel_multiplier, | |
128: 128 * channel_multiplier, | |
256: 64 * channel_multiplier, | |
512: 32 * channel_multiplier, | |
1024: 16 * channel_multiplier, | |
} | |
log_size = int(math.log(image_size, 2)) | |
in_channel = channels[image_size] | |
blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
blocks.append(DiscriminatorBlock(in_channel, out_channel)) | |
in_channel = out_channel | |
self.blocks = nn.ModuleList(blocks) | |
self.final_conv = nn.Sequential( | |
nn.Conv2d(in_channel, channels[4], 3, padding=1), | |
leaky_relu(), | |
) | |
self.final_linear = nn.Sequential( | |
nn.Linear(channels[4] * 4 * 4, channels[4]), | |
leaky_relu(), | |
nn.Linear(channels[4], 1) | |
) | |
def forward(self, x): | |
for block in self.blocks: | |
x = block(x) | |
x = self.final_conv(x) | |
x = x.view(x.shape[0], -1) | |
x = self.final_linear(x) | |
return x | |
class DiscriminatorBlock(nn.Module): | |
def __init__(self, input_channels, filters, downsample=True): | |
super().__init__() | |
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1)) | |
self.net = nn.Sequential( | |
nn.Conv2d(input_channels, filters, 3, padding=1), | |
leaky_relu(), | |
nn.Conv2d(filters, filters, 3, padding=1), | |
leaky_relu() | |
) | |
self.downsample = nn.Sequential( | |
Blur(), | |
nn.Conv2d(filters, filters, 3, padding = 1, stride = 2) | |
) if downsample else None | |
def forward(self, x): | |
res = self.conv_res(x) | |
x = self.net(x) | |
if exists(self.downsample): | |
x = self.downsample(x) | |
x = (x + res) * (1 / math.sqrt(2)) | |
return x | |
class Blur(nn.Module): | |
def __init__(self): | |
super().__init__() | |
f = torch.Tensor([1, 2, 1]) | |
self.register_buffer('f', f) | |
def forward(self, x): | |
f = self.f | |
f = f[None, None, :] * f [None, :, None] | |
return filter2d(x, f, normalized=True) | |
def leaky_relu(p=0.2): | |
return nn.LeakyReLU(p, inplace=True) | |
def exists(val): | |
return val is not None | |