Spaces:
Running
on
Zero
Running
on
Zero
wondervictor
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -32,6 +32,7 @@ print("Torch version:", torch.__version__)
|
|
32 |
# # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/')
|
33 |
ckpt_folder = './checkpoints'
|
34 |
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl/flan-t5-xl")
|
|
|
35 |
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder)
|
36 |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder)
|
37 |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder)
|
@@ -45,6 +46,10 @@ hf_hub_download(repo_id="lllyasviel/Annotators", filename="dpt_hybrid-midas-501f
|
|
45 |
hf_hub_download(repo_id="wondervictor/ControlAR", filename="canny_MR.safetensors", local_dir=ckpt_folder)
|
46 |
hf_hub_download(repo_id="wondervictor/ControlAR", filename="depth_MR.safetensors", local_dir=ckpt_folder)
|
47 |
|
|
|
|
|
|
|
|
|
48 |
|
49 |
DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
|
50 |
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
|
|
|
32 |
# # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/')
|
33 |
ckpt_folder = './checkpoints'
|
34 |
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl/flan-t5-xl")
|
35 |
+
dinov2_folder = os.path.join(ckpt_folder, "dinov2-small")
|
36 |
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder)
|
37 |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder)
|
38 |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder)
|
|
|
46 |
hf_hub_download(repo_id="wondervictor/ControlAR", filename="canny_MR.safetensors", local_dir=ckpt_folder)
|
47 |
hf_hub_download(repo_id="wondervictor/ControlAR", filename="depth_MR.safetensors", local_dir=ckpt_folder)
|
48 |
|
49 |
+
hf_hub_download(repo_id="facebook/dinov2-small", filename="config.json", local_dir=dinov2_folder)
|
50 |
+
hf_hub_download(repo_id="facebook/dinov2-small", filename="preprocessor_config.json", local_dir=dinov2_folder)
|
51 |
+
hf_hub_download(repo_id="facebook/dinov2-small", filename="pytorch_model.bin", local_dir=dinov2_folder)
|
52 |
+
|
53 |
|
54 |
DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)."
|
55 |
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
|