import gradio as gr import random def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, 100000000) return seed examples = [ [ "condition/example/t2i/bird.jpg", "A bird made of blue crystal" ], [ "condition/example/t2i/sofa.png", "The red sofa in the living room has several pillows on it" ], [ "condition/example/t2i/house.jpg", "A brick house with a chimney under a starry sky.", ] ] def create_demo(process): with gr.Blocks() as demo: with gr.Row(): with gr.Column(): image = gr.Image() prompt = gr.Textbox(label="Text prompt") run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): preprocessor_name = gr.Radio( label="Preprocessor", choices=[ "depth", "No preprocess", ], type="value", value="depth", info='depth.', ) cfg_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=4, step=0.1) control_strength = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label="control_strength") # resolution = gr.Slider(label="(H, W)", # minimum=384, # maximum=768, # value=512, # step=16) top_k = gr.Slider(minimum=1, maximum=16384, step=1, value=2000, label='Top-K') top_p = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label="Top-P") temperature = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label='Temperature') seed = gr.Slider(label="Seed", minimum=0, maximum=100000000, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): result = gr.Gallery(label="Output", show_label=False, height='800px', columns=2, object_fit="scale-down") gr.Examples( examples=examples, inputs=[ image, prompt, # resolution, ] ) inputs = [ image, prompt, cfg_scale, temperature, top_k, top_p, seed, control_strength, preprocessor_name ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=process, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=process, inputs=inputs, outputs=result, api_name="depth", ) return demo if __name__ == "__main__": from model import Model model = Model() demo = create_demo(model.process_depth) demo.queue().launch(share=False, server_name="0.0.0.0")