from PIL import Image import gradio as gr from huggingface_hub import hf_hub_download from model import Model from app_canny import create_demo as create_demo_canny from app_depth import create_demo as create_demo_depth import os hf_hub_download(repo_id='wondervictor/ControlAR', filename='canny_MR.safetensors', local_dir='./checkpoints/') hf_hub_download(repo_id='wondervictor/ControlAR', filename='depth_MR.safetensors', local_dir='./checkpoints/') # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/') DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)." SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1" model = Model() device = "cuda" model.to(device) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=SHOW_DUPLICATE_BUTTON, ) with gr.Tabs(): # with gr.TabItem("Depth"): # create_demo_depth(model.process_depth) with gr.TabItem("Canny"): create_demo_canny(model.process_canny) if __name__ == "__main__": demo.launch(share=False)