Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,951 Bytes
a93afca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import glob
import json
import os
import cv2
import numpy as np
def get_mask_from_json(json_path, img):
try:
with open(json_path, "r") as r:
anno = json.loads(r.read())
except:
with open(json_path, "r", encoding="cp1252") as r:
anno = json.loads(r.read())
inform = anno["shapes"]
comments = anno["text"]
is_sentence = anno["is_sentence"]
height, width = img.shape[:2]
### sort polies by area
area_list = []
valid_poly_list = []
for i in inform:
label_id = i["label"]
points = i["points"]
if "flag" == label_id.lower(): ## meaningless deprecated annotations
continue
tmp_mask = np.zeros((height, width), dtype=np.uint8)
cv2.polylines(tmp_mask, np.array([points], dtype=np.int32), True, 1, 1)
cv2.fillPoly(tmp_mask, np.array([points], dtype=np.int32), 1)
tmp_area = tmp_mask.sum()
area_list.append(tmp_area)
valid_poly_list.append(i)
### ground-truth mask
sort_index = np.argsort(area_list)[::-1].astype(np.int32)
sort_index = list(sort_index)
sort_inform = []
for s_idx in sort_index:
sort_inform.append(valid_poly_list[s_idx])
mask = np.zeros((height, width), dtype=np.uint8)
for i in sort_inform:
label_id = i["label"]
points = i["points"]
if "ignore" in label_id.lower():
label_value = 255 # ignored during evaluation
else:
label_value = 1 # target
cv2.polylines(mask, np.array([points], dtype=np.int32), True, label_value, 1)
cv2.fillPoly(mask, np.array([points], dtype=np.int32), label_value)
return mask, comments, is_sentence
if __name__ == "__main__":
data_dir = "./train"
vis_dir = "./vis"
if not os.path.exists(vis_dir):
os.makedirs(vis_dir)
json_path_list = sorted(glob.glob(data_dir + "/*.json"))
for json_path in json_path_list:
img_path = json_path.replace(".json", ".jpg")
img = cv2.imread(img_path)[:, :, ::-1]
# In generated mask, value 1 denotes valid target region, and value 255 stands for region ignored during evaluaiton.
mask, comments, is_sentence = get_mask_from_json(json_path, img)
## visualization. Green for target, and red for ignore.
valid_mask = (mask == 1).astype(np.float32)[:, :, None]
ignore_mask = (mask == 255).astype(np.float32)[:, :, None]
vis_img = img * (1 - valid_mask) * (1 - ignore_mask) + (
(np.array([0, 255, 0]) * 0.6 + img * 0.4) * valid_mask
+ (np.array([255, 0, 0]) * 0.6 + img * 0.4) * ignore_mask
)
vis_img = np.concatenate([img, vis_img], 1)
vis_path = os.path.join(
vis_dir, json_path.split("/")[-1].replace(".json", ".jpg")
)
cv2.imwrite(vis_path, vis_img[:, :, ::-1])
print("Visualization has been saved to: ", vis_path)
|