Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from pip._internal import main | |
main(['install', 'timm==1.0.8']) | |
import timm | |
print("installed", timm.__version__) | |
import gradio as gr | |
from inference import sam_preprocess, beit3_preprocess | |
from model.evf_sam import EvfSamModel | |
from transformers import AutoTokenizer | |
import torch | |
import numpy as np | |
import sys | |
import os | |
version = "YxZhang/evf-sam-multitask" | |
model_type = "ori" | |
tokenizer = AutoTokenizer.from_pretrained( | |
version, | |
padding_side="right", | |
use_fast=False, | |
) | |
kwargs = { | |
"torch_dtype": torch.half, | |
} | |
model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True, | |
**kwargs).eval() | |
model.to('cuda') | |
def pred(image_np, prompt, semantic_type): | |
original_size_list = [image_np.shape[:2]] | |
image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype, | |
device=model.device) | |
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type) | |
image_sam = image_sam.to(dtype=model.dtype, device=model.device) | |
if semantic_type: | |
prompt = "[semantic] " + prompt | |
input_ids = tokenizer( | |
prompt, return_tensors="pt")["input_ids"].to(device=model.device) | |
# infer | |
pred_mask = model.inference( | |
image_sam.unsqueeze(0), | |
image_beit.unsqueeze(0), | |
input_ids, | |
resize_list=[resize_shape], | |
original_size_list=original_size_list, | |
) | |
pred_mask = pred_mask.detach().cpu().numpy()[0] | |
pred_mask = pred_mask > 0 | |
visualization = image_np.copy() | |
visualization[pred_mask] = (image_np * 0.5 + | |
pred_mask[:, :, None].astype(np.uint8) * | |
np.array([50, 120, 220]) * 0.5)[pred_mask] | |
return visualization / 255.0, pred_mask.astype(np.float16) | |
desc = """ | |
<div><h3>EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3> | |
<p>EVF-SAM extends SAM's capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.</p></div> | |
<div style='display:flex; gap: 0.25rem; align-items: center'><a href="https://arxiv.org/abs/2406.20076"><img src="https://img.shields.io/badge/arXiv-Paper-red"></a><a href="https://github.com/hustvl/EVF-SAM"><img src="https://img.shields.io/badge/GitHub-Code-blue"></a></div> | |
""" | |
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>' | |
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)' | |
demo = gr.Interface( | |
fn=pred, | |
inputs=[ | |
gr.components.Image(type="numpy", label="Image", image_mode="RGB"), | |
gr.components.Textbox( | |
label="Prompt", | |
info= | |
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English" | |
), | |
gr.components.Checkbox( | |
False, | |
label="semantic level", | |
info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)" | |
), | |
], | |
outputs=[ | |
gr.components.Image(type="numpy", label="visulization"), | |
gr.components.Image(type="numpy", label="mask") | |
], | |
examples=[["assets/zebra.jpg", "zebra top left"], | |
["assets/bus.jpg", "bus going to south common"], | |
[ | |
"assets/carrots.jpg", | |
"3carrots in center with ice and greenn leaves" | |
]], | |
title="π· EVF-SAM: Referring Expression Segmentation", | |
description=desc, | |
allow_flagging="never") | |
# demo.launch() | |
demo.launch() | |