evf-sam / app.py
wondervictor's picture
add accelerate
f06103e
raw
history blame
2.55 kB
import gradio as gr
from inference import sam_preprocess, beit3_preprocess
from model.evf_sam import EvfSamModel
from transformers import AutoTokenizer
import torch
import numpy as np
import sys
import spaces
version = "YxZhang/evf-sam"
model_type = "ori"
tokenizer = AutoTokenizer.from_pretrained(
version,
padding_side="right",
use_fast=False,
)
kwargs = {
"torch_dtype": torch.half,
}
model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True,
**kwargs).eval()
model.to('cuda')
@spaces.GPU
@torch.no_grad()
def pred(image_np, prompt):
original_size_list = [image_np.shape[:2]]
image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype,
device=model.device)
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
image_sam = image_sam.to(dtype=model.dtype, device=model.device)
input_ids = tokenizer(
prompt, return_tensors="pt")["input_ids"].to(device=model.device)
# infer
pred_mask = model.inference(
image_sam.unsqueeze(0),
image_beit.unsqueeze(0),
input_ids,
resize_list=[resize_shape],
original_size_list=original_size_list,
)
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
visualization = image_np.copy()
visualization[pred_mask] = (image_np * 0.5 +
pred_mask[:, :, None].astype(np.uint8) *
np.array([50, 120, 220]) * 0.5)[pred_mask]
return visualization / 255.0, pred_mask.astype(np.float16)
demo = gr.Interface(
fn=pred,
inputs=[
gr.components.Image(type="numpy", label="Image", image_mode="RGB"),
gr.components.Textbox(
label="Prompt",
info=
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
)
],
outputs=[
gr.components.Image(type="numpy", label="visulization"),
gr.components.Image(type="numpy", label="mask")
],
examples=[["assets/zebra.jpg", "zebra top left"],
["assets/bus.jpg", "bus going to south common"],
[
"assets/carrots.jpg",
"3carrots in center with ice and greenn leaves"
]],
title="EVF-SAM referring expression segmentation",
allow_flagging="never")
# demo.launch()
demo.launch(share=False, server_name="0.0.0.0", server_port=10001)