evf-sam / model /unilm /beit3 /modeling_utils.py
wondervictor's picture
add app
a93afca
raw
history blame
3 kB
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import math
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
from torchscale.model.BEiT3 import BEiT3
from torchscale.architecture.config import EncoderConfig
def trunc_normal_(tensor, mean=0., std=1.):
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
def _get_base_config(
img_size=224, patch_size=16, drop_path_rate=0,
checkpoint_activations=None, mlp_ratio=4, vocab_size=64010, **kwargs
):
return EncoderConfig(
img_size=img_size, patch_size=patch_size, vocab_size=vocab_size, multiway=True,
layernorm_embedding=False, normalize_output=True, no_output_layer=True,
drop_path_rate=drop_path_rate, encoder_embed_dim=768, encoder_attention_heads=12,
encoder_ffn_embed_dim=int(768 * mlp_ratio), encoder_layers=12,
checkpoint_activations=checkpoint_activations,
)
def _get_large_config(
img_size=224, patch_size=16, drop_path_rate=0,
checkpoint_activations=None, mlp_ratio=4, vocab_size=64010, **kwargs
):
return EncoderConfig(
img_size=img_size, patch_size=patch_size, vocab_size=vocab_size, multiway=True,
layernorm_embedding=False, normalize_output=True, no_output_layer=True,
drop_path_rate=drop_path_rate, encoder_embed_dim=1024, encoder_attention_heads=16,
encoder_ffn_embed_dim=int(1024 * mlp_ratio), encoder_layers=24,
checkpoint_activations=checkpoint_activations,
)
class BEiT3Wrapper(nn.Module):
def __init__(self, args, **kwargs):
super().__init__()
self.args = args
self.beit3 = BEiT3(args)
self.apply(self._init_weights)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def get_num_layers(self):
return self.beit3.encoder.num_layers
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'beit3.encoder.embed_positions.A.weight', 'beit3.vision_embed.cls_token', 'logit_scale'}
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)