evf-sam / utils /dataset.py
wondervictor's picture
add app
a93afca
import glob
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools import mask
from model.segment_anything.utils.transforms import ResizeLongestSide
from .data_processing import get_mask_from_json
from .refer import REFER
from .refer_seg_dataset import ReferSegDataset
from .sem_seg_dataset import SemSegDataset
from torchvision import transforms
import json
from PIL import Image
def collate_fn(
batch, tokenizer=None, local_rank=-1
):
image_path_list = []
images_list = []
images_evf_list = []
masks_list = []
label_list = []
resize_list = []
sampled_classes_list = []
offset_list = [0]
cnt = 0
inferences = []
for (
image_path,
images,
images_evf,
masks,
label,
resize,
sampled_classes,
inference,
) in batch:
image_path_list.append(image_path)
images_list.append(images)
images_evf_list.append(images_evf)
label_list.append(label)
masks_list.append(masks.float())
resize_list.append(resize)
sampled_classes_list.extend(sampled_classes)
cnt += len(sampled_classes)
offset_list.append(cnt)
inferences.append(inference)
input_ids = [
tokenizer(prompt, return_tensors="pt").input_ids[0]
for prompt in sampled_classes_list
]
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=tokenizer.pad_token_id
)
attention_masks = input_ids.ne(tokenizer.pad_token_id)
if inferences[0] == False:
truncate_len = tokenizer.model_max_length
if input_ids.shape[1] > truncate_len:
input_ids = input_ids[:, :truncate_len]
targets = targets[:, :truncate_len]
attention_masks = attention_masks[:, :truncate_len]
return {
"image_paths": image_path_list,
"images": torch.stack(images_list, dim=0),
"images_evf": torch.stack(images_evf_list, dim=0),
"input_ids": input_ids,
"attention_masks": attention_masks,
"masks_list": masks_list,
"label_list": label_list,
"resize_list": resize_list,
"offset": torch.LongTensor(offset_list),
"sampled_classes_list": sampled_classes_list,
"inference": inferences[0],
}
class HybridDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
samples_per_epoch=500 * 8 * 2 * 10,
precision: str = "fp32",
image_size: int = 224,
num_classes_per_sample: int = 3,
exclude_val=False,
dataset="sem_seg||refer_seg",
sample_rate=[9, 3, 3, 1],
sem_seg_data="ade20k||cocostuff||pascal_part||mapillary",
refer_seg_data="refclef||refcoco||refcoco+||refcocog",
explanatory=-1,
model_type="ori",
transform=ResizeLongestSide(1024),
):
self.transform=transform
self.model_type = model_type
self.exclude_val = exclude_val
self.dataset = dataset
self.samples_per_epoch = samples_per_epoch
self.explanatory = explanatory
self.num_classes_per_sample = num_classes_per_sample
sample_rate = np.array(sample_rate)
self.sample_rate = sample_rate / sample_rate.sum()
self.base_image_dir = base_image_dir
self.image_size = image_size
self.tokenizer = tokenizer
self.precision = precision
self.datasets = dataset.split("||")
self.all_datasets = []
for dataset in self.datasets:
if dataset == "sem_seg":
self.all_datasets.append(
SemSegDataset(
base_image_dir,
tokenizer,
samples_per_epoch,
precision,
image_size,
num_classes_per_sample,
exclude_val,
sem_seg_data,
self.model_type,
self.transform
)
)
elif dataset == "refer_seg":
self.all_datasets.append(
ReferSegDataset(
base_image_dir,
tokenizer,
samples_per_epoch,
precision,
image_size,
num_classes_per_sample,
exclude_val,
refer_seg_data,
self.model_type,
self.transform
)
)
def __len__(self):
return self.samples_per_epoch
def __getitem__(self, idx):
ind = np.random.choice(list(range(len(self.datasets))), p=self.sample_rate)
data = self.all_datasets[ind]
inference = False
return *data[0], inference
def init_ade20k(base_image_dir):
with open("utils/ade20k_classes.json", "r") as f:
ade20k_classes = json.load(f)
ade20k_classes = np.array(ade20k_classes)
image_ids = sorted(
os.listdir(os.path.join(base_image_dir, "ade20k/images", "validation"))
)
ade20k_image_ids = []
for x in image_ids:
if x.endswith(".jpg"):
ade20k_image_ids.append(x[:-4])
ade20k_images = []
for image_id in ade20k_image_ids: # self.descriptions:
ade20k_images.append(
os.path.join(
base_image_dir,
"ade20k",
"images",
"validation",
"{}.jpg".format(image_id),
)
)
ade20k_labels = [
x.replace(".jpg", ".png").replace("images", "annotations")
for x in ade20k_images
]
print("ade20k: ", len(ade20k_images))
return ade20k_classes, ade20k_images, ade20k_labels
class ValDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
val_dataset,
image_size=224,
model_type="ori"
):
self.model_type = model_type
self.base_image_dir = base_image_dir
splits = val_dataset.split("|")
if len(splits) == 3:
ds, splitBy, split = splits
base_image_dir = os.path.join(base_image_dir, "refer_seg")
refer_api = REFER(base_image_dir, ds, splitBy)
ref_ids_val = refer_api.getRefIds(split=split)
images_ids_val = refer_api.getImgIds(ref_ids=ref_ids_val)
refs_val = refer_api.loadRefs(ref_ids=ref_ids_val)
refer_seg_ds = {}
refer_seg_ds["images"] = []
loaded_images = refer_api.loadImgs(image_ids=images_ids_val)
for item in loaded_images:
item = item.copy()
if ds == "refclef":
item["file_name"] = os.path.join(
base_image_dir, "images/saiapr_tc-12", item["file_name"]
)
elif ds in ["refcoco", "refcoco+", "refcocog", "grefcoco"]:
item["file_name"] = os.path.join(
base_image_dir,
"images/mscoco/images/train2014",
item["file_name"],
)
refer_seg_ds["images"].append(item)
refer_seg_ds["annotations"] = refer_api.Anns # anns_val
img2refs = {}
for ref in refs_val:
image_id = ref["image_id"]
img2refs[image_id] = img2refs.get(image_id, []) + [
ref,
]
refer_seg_ds["img2refs"] = img2refs
self.refer_seg_ds = refer_seg_ds
self.data_type = "refer_seg"
elif val_dataset=="ade":
ds = "ade"
self.classes, self.images, self.labels = init_ade20k(base_image_dir)
self.data_type = "sem_seg"
self.ds = ds
self.tokenizer = tokenizer
self.transform = ResizeLongestSide(1024)
self.image_preprocessor = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((image_size, image_size), interpolation=3),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
def __len__(self):
if self.data_type == "refer_seg":
return len(self.refer_seg_ds["images"])
else:
return len(self.images)
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
if self.model_type=="effi":
x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0)
else:
# Pad
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def __getitem__(self, idx):
if self.data_type == "refer_seg":
refer_seg_ds = self.refer_seg_ds
images = refer_seg_ds["images"]
annotations = refer_seg_ds["annotations"]
img2refs = refer_seg_ds["img2refs"]
image_info = images[idx]
image_path = image_info["file_name"]
image_id = image_info["id"]
refs = img2refs[image_id]
if len(refs) == 0:
raise ValueError("image {} has no refs".format(image_id))
sents = []
ann_ids = []
for ref in refs:
for sent in ref["sentences"]:
sents.append(sent["sent"].strip().lower())
ann_ids.append(ref["ann_id"])
sampled_sents = sents
sampled_ann_ids = ann_ids
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
is_sentence = False
elif self.data_type == "sem_seg":
image_path = self.images[idx]
label_path = self.labels[idx]
label = Image.open(label_path)
label = np.array(label)
label[label == 0] = 255
label -= 1
label[label == 254] = 255
unique_label = np.unique(label).tolist()
if 255 in unique_label:
unique_label.remove(255)
sampled_sents = [self.classes[class_id] for class_id in unique_label]
img = cv2.imread(image_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
class_ids = unique_label
label = torch.from_numpy(label).long()
masks = []
for class_id in class_ids:
masks.append(label == class_id)
masks = torch.stack(masks, dim=0)
# preprocess image for evf
image_evf = self.image_preprocessor(image)
# preprocess image for sam
image = self.transform.apply_image(image)
resize = image.shape[:2]
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
if self.data_type == "refer_seg":
masks = []
for i, ann_id in enumerate(sampled_ann_ids):
ann = annotations[ann_id]
if len(ann["segmentation"]) == 0 and sampled_sents[i] != "":
m = np.zeros((image_info["height"], image_info["width"], 1))
else:
if type(ann["segmentation"][0]) == list: # polygon
rle = mask.frPyObjects(
ann["segmentation"],
image_info["height"],
image_info["width"],
)
else:
rle = ann["segmentation"]
for i in range(len(rle)):
if not isinstance(rle[i]["counts"], bytes):
rle[i]["counts"] = rle[i]["counts"].encode()
m = mask.decode(rle)
m = np.sum(
m, axis=2
) # sometimes there are multiple binary map (corresponding to multiple segs)
m = m.astype(np.uint8) # convert to np.uint8
masks.append(m)
if not isinstance(masks, torch.Tensor):
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
labels = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
inference = True
return (
image_path,
image,
image_evf,
masks,
labels,
resize,
sampled_sents,
inference,
)