import spaces from pip._internal import main main(['install', 'timm==1.0.8']) import timm print("installed", timm.__version__) import gradio as gr from inference import sam_preprocess, beit3_preprocess from model.evf_sam import EvfSamModel from transformers import AutoTokenizer import torch import numpy as np import sys import os version = "YxZhang/evf-sam-multitask" model_type = "ori" tokenizer = AutoTokenizer.from_pretrained( version, padding_side="right", use_fast=False, ) kwargs = { "torch_dtype": torch.half, } model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True, **kwargs).eval() model.to('cuda') @spaces.GPU @torch.no_grad() def pred(image_np, prompt, semantic_type): original_size_list = [image_np.shape[:2]] image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype, device=model.device) image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type) image_sam = image_sam.to(dtype=model.dtype, device=model.device) if semantic_type: prompt = "[semantic] " + prompt input_ids = tokenizer( prompt, return_tensors="pt")["input_ids"].to(device=model.device) # infer pred_mask = model.inference( image_sam.unsqueeze(0), image_beit.unsqueeze(0), input_ids, resize_list=[resize_shape], original_size_list=original_size_list, ) pred_mask = pred_mask.detach().cpu().numpy()[0] pred_mask = pred_mask > 0 visualization = image_np.copy() visualization[pred_mask] = (image_np * 0.5 + pred_mask[:, :, None].astype(np.uint8) * np.array([50, 120, 220]) * 0.5)[pred_mask] return visualization / 255.0, pred_mask.astype(np.float16) desc = """

EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model

EVF-SAM extends SAM's capabilities with text-prompted segmentation, achieving high accuracy in Referring Expression Segmentation.

""" # desc_title_str = '

Early Vision-Language Fusion for Text-Prompted Segment Anything Model

' # desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)' demo = gr.Interface( fn=pred, inputs=[ gr.components.Image(type="numpy", label="Image", image_mode="RGB"), gr.components.Textbox( label="Prompt", info= "Use a phrase or sentence to describe the object you want to segment. Currently we only support English" ), gr.components.Checkbox( False, label="semantic level", info="check this if you want to segment body parts or background or multi objects (only available with latest evf-sam checkpoint)" ), ], outputs=[ gr.components.Image(type="numpy", label="visulization"), gr.components.Image(type="numpy", label="mask") ], examples=[["assets/zebra.jpg", "zebra top left"], ["assets/bus.jpg", "bus going to south common"], [ "assets/carrots.jpg", "3carrots in center with ice and greenn leaves" ], ["assets/man_sdxl.png", "hair", True], ["assets/seaside_sdxl.png", "sea", True] ], title="📷 EVF-SAM: Referring Expression Segmentation", description=desc, allow_flagging="never") # demo.launch() demo.launch()