Spaces:
Running
on
Zero
Running
on
Zero
wondervictor
commited on
Commit
·
95bdec8
1
Parent(s):
5e769e6
update sam2
Browse files- app.py +110 -38
- app_video.py → app.py.bak +38 -110
app.py
CHANGED
@@ -7,15 +7,18 @@ import timm
|
|
7 |
print("installed", timm.__version__)
|
8 |
import gradio as gr
|
9 |
from inference import sam_preprocess, beit3_preprocess
|
10 |
-
from model.
|
|
|
11 |
from transformers import AutoTokenizer
|
12 |
import torch
|
|
|
13 |
import numpy as np
|
14 |
import sys
|
15 |
import os
|
|
|
16 |
|
17 |
-
version = "YxZhang/evf-
|
18 |
-
model_type = "
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
version,
|
@@ -26,27 +29,40 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
26 |
kwargs = {
|
27 |
"torch_dtype": torch.half,
|
28 |
}
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
@spaces.GPU
|
35 |
@torch.no_grad()
|
36 |
-
def
|
37 |
original_size_list = [image_np.shape[:2]]
|
38 |
|
39 |
-
image_beit = beit3_preprocess(image_np, 224).to(dtype=
|
40 |
-
device=
|
41 |
|
42 |
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
|
43 |
-
image_sam = image_sam.to(dtype=
|
|
|
44 |
|
45 |
input_ids = tokenizer(
|
46 |
-
prompt, return_tensors="pt")["input_ids"].to(device=
|
47 |
|
48 |
# infer
|
49 |
-
pred_mask =
|
50 |
image_sam.unsqueeze(0),
|
51 |
image_beit.unsqueeze(0),
|
52 |
input_ids,
|
@@ -61,7 +77,50 @@ def pred(image_np, prompt):
|
|
61 |
pred_mask[:, :, None].astype(np.uint8) *
|
62 |
np.array([50, 120, 220]) * 0.5)[pred_mask]
|
63 |
|
64 |
-
return visualization / 255.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
desc = """
|
@@ -73,28 +132,41 @@ desc = """
|
|
73 |
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
|
74 |
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
gr.
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
)
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
print("installed", timm.__version__)
|
8 |
import gradio as gr
|
9 |
from inference import sam_preprocess, beit3_preprocess
|
10 |
+
from model.evf_sam2 import EvfSam2Model
|
11 |
+
from model.evf_sam2_video import EvfSam2Model as EvfSam2VideoModel
|
12 |
from transformers import AutoTokenizer
|
13 |
import torch
|
14 |
+
import cv2
|
15 |
import numpy as np
|
16 |
import sys
|
17 |
import os
|
18 |
+
import tqdm
|
19 |
|
20 |
+
version = "YxZhang/evf-sam2"
|
21 |
+
model_type = "sam2"
|
22 |
|
23 |
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
version,
|
|
|
29 |
kwargs = {
|
30 |
"torch_dtype": torch.half,
|
31 |
}
|
32 |
+
|
33 |
+
image_model = EvfSam2Model.from_pretrained(version,
|
34 |
+
low_cpu_mem_usage=True,
|
35 |
+
**kwargs)
|
36 |
+
del image_model.visual_model.memory_encoder
|
37 |
+
del image_model.visual_model.memory_attention
|
38 |
+
image_model = image_model.eval()
|
39 |
+
image_model.to('cuda')
|
40 |
+
|
41 |
+
video_model = EvfSam2VideoModel.from_pretrained(version,
|
42 |
+
low_cpu_mem_usage=True,
|
43 |
+
**kwargs)
|
44 |
+
video_model = video_model.eval()
|
45 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
46 |
+
video_model.to('cuda')
|
47 |
|
48 |
|
49 |
@spaces.GPU
|
50 |
@torch.no_grad()
|
51 |
+
def inference_image(image_np, prompt):
|
52 |
original_size_list = [image_np.shape[:2]]
|
53 |
|
54 |
+
image_beit = beit3_preprocess(image_np, 224).to(dtype=image_model.dtype,
|
55 |
+
device=image_model.device)
|
56 |
|
57 |
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
|
58 |
+
image_sam = image_sam.to(dtype=image_model.dtype,
|
59 |
+
device=image_model.device)
|
60 |
|
61 |
input_ids = tokenizer(
|
62 |
+
prompt, return_tensors="pt")["input_ids"].to(device=image_model.device)
|
63 |
|
64 |
# infer
|
65 |
+
pred_mask = image_model.inference(
|
66 |
image_sam.unsqueeze(0),
|
67 |
image_beit.unsqueeze(0),
|
68 |
input_ids,
|
|
|
77 |
pred_mask[:, :, None].astype(np.uint8) *
|
78 |
np.array([50, 120, 220]) * 0.5)[pred_mask]
|
79 |
|
80 |
+
return visualization / 255.0
|
81 |
+
|
82 |
+
|
83 |
+
@spaces.GPU
|
84 |
+
@torch.no_grad()
|
85 |
+
@torch.autocast(device_type="cuda", dtype=torch.float16)
|
86 |
+
def inference_video(video_path, prompt):
|
87 |
+
|
88 |
+
os.system("rm -rf demo_temp")
|
89 |
+
os.makedirs("demo_temp/input_frames", exist_ok=True)
|
90 |
+
os.system(
|
91 |
+
"ffmpeg -i {} -q:v 2 -start_number 0 demo_temp/input_frames/'%05d.jpg'"
|
92 |
+
.format(video_path))
|
93 |
+
input_frames = sorted(os.listdir("demo_temp/input_frames"))
|
94 |
+
image_np = cv2.imread("demo_temp/input_frames/00000.jpg")
|
95 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
96 |
+
|
97 |
+
height, width, channels = image_np.shape
|
98 |
+
|
99 |
+
image_beit = beit3_preprocess(image_np, 224).to(dtype=video_model.dtype,
|
100 |
+
device=video_model.device)
|
101 |
+
|
102 |
+
input_ids = tokenizer(
|
103 |
+
prompt, return_tensors="pt")["input_ids"].to(device=video_model.device)
|
104 |
+
|
105 |
+
# infer
|
106 |
+
output = video_model.inference(
|
107 |
+
"demo_temp/input_frames",
|
108 |
+
image_beit.unsqueeze(0),
|
109 |
+
input_ids,
|
110 |
+
)
|
111 |
+
# save visualization
|
112 |
+
video_writer = cv2.VideoWriter("demo_temp/out.mp4", fourcc, 30,
|
113 |
+
(width, height))
|
114 |
+
pbar = tqdm(input_frames)
|
115 |
+
pbar.set_description("generating video: ")
|
116 |
+
for i, file in enumerate(pbar):
|
117 |
+
img = cv2.imread(os.path.join("demo_temp/input_frames", file))
|
118 |
+
vis = img + np.array([0, 0, 128]) * output[i][1].transpose(1, 2, 0)
|
119 |
+
vis = np.clip(vis, 0, 255)
|
120 |
+
vis = np.uint8(vis)
|
121 |
+
video_writer.write(vis)
|
122 |
+
video_writer.release()
|
123 |
+
return "demo_temp/out.mp4"
|
124 |
|
125 |
|
126 |
desc = """
|
|
|
132 |
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
|
133 |
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
|
134 |
|
135 |
+
with gr.Blocks() as demo:
|
136 |
+
gr.Markdown(desc)
|
137 |
+
with gr.Tab(label="EVF-SAM-2-Image"):
|
138 |
+
with gr.Row():
|
139 |
+
input_image = gr.Image(type='numpy',
|
140 |
+
label='Input Image',
|
141 |
+
image_mode='RGB')
|
142 |
+
output_image = gr.Image(type='numpy', label='Output Image')
|
143 |
+
with gr.Row():
|
144 |
+
image_prompt = gr.Textbox(
|
145 |
+
label="Prompt",
|
146 |
+
info=
|
147 |
+
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
|
148 |
+
)
|
149 |
+
submit_image = gr.Button(value='Submit',
|
150 |
+
scale=1,
|
151 |
+
variant='primary')
|
152 |
+
with gr.Tab(label="EVF-SAM-2-Video"):
|
153 |
+
with gr.Row():
|
154 |
+
input_video = gr.Video(label='Input Video')
|
155 |
+
output_video = gr.Video(label='Output Video')
|
156 |
+
with gr.Row():
|
157 |
+
video_prompt = gr.Textbox(
|
158 |
+
label="Prompt",
|
159 |
+
info=
|
160 |
+
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
|
161 |
+
)
|
162 |
+
submit_video = gr.Button(value='Submit',
|
163 |
+
scale=1,
|
164 |
+
variant='primary')
|
165 |
+
|
166 |
+
submit_image.click(fn=inference_image,
|
167 |
+
inputs=[input_image, image_prompt],
|
168 |
+
outputs=output_image)
|
169 |
+
submit_video.click(fn=inference_video,
|
170 |
+
inputs=[input_video, video_prompt],
|
171 |
+
outputs=output_video)
|
172 |
+
demo.launch(show_error=True)
|
app_video.py → app.py.bak
RENAMED
@@ -7,18 +7,15 @@ import timm
|
|
7 |
print("installed", timm.__version__)
|
8 |
import gradio as gr
|
9 |
from inference import sam_preprocess, beit3_preprocess
|
10 |
-
from model.
|
11 |
-
from model.evf_sam2_video import EvfSam2Model as EvfSam2VideoModel
|
12 |
from transformers import AutoTokenizer
|
13 |
import torch
|
14 |
-
import cv2
|
15 |
import numpy as np
|
16 |
import sys
|
17 |
import os
|
18 |
-
import tqdm
|
19 |
|
20 |
-
version = "YxZhang/evf-
|
21 |
-
model_type = "
|
22 |
|
23 |
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
version,
|
@@ -29,40 +26,27 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
29 |
kwargs = {
|
30 |
"torch_dtype": torch.half,
|
31 |
}
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
**kwargs)
|
36 |
-
del image_model.visual_model.memory_encoder
|
37 |
-
del image_model.visual_model.memory_attention
|
38 |
-
image_model = image_model.eval()
|
39 |
-
image_model.to('cuda')
|
40 |
-
|
41 |
-
video_model = EvfSam2VideoModel.from_pretrained(version,
|
42 |
-
low_cpu_mem_usage=True,
|
43 |
-
**kwargs)
|
44 |
-
video_model = video_model.eval()
|
45 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
46 |
-
video_model.to('cuda')
|
47 |
|
48 |
|
49 |
@spaces.GPU
|
50 |
@torch.no_grad()
|
51 |
-
def
|
52 |
original_size_list = [image_np.shape[:2]]
|
53 |
|
54 |
-
image_beit = beit3_preprocess(image_np, 224).to(dtype=
|
55 |
-
device=
|
56 |
|
57 |
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
|
58 |
-
image_sam = image_sam.to(dtype=
|
59 |
-
device=image_model.device)
|
60 |
|
61 |
input_ids = tokenizer(
|
62 |
-
prompt, return_tensors="pt")["input_ids"].to(device=
|
63 |
|
64 |
# infer
|
65 |
-
pred_mask =
|
66 |
image_sam.unsqueeze(0),
|
67 |
image_beit.unsqueeze(0),
|
68 |
input_ids,
|
@@ -77,50 +61,7 @@ def inference_image(image_np, prompt):
|
|
77 |
pred_mask[:, :, None].astype(np.uint8) *
|
78 |
np.array([50, 120, 220]) * 0.5)[pred_mask]
|
79 |
|
80 |
-
return visualization / 255.0
|
81 |
-
|
82 |
-
|
83 |
-
@spaces.GPU
|
84 |
-
@torch.no_grad()
|
85 |
-
@torch.autocast(device_type="cuda", dtype=torch.float16)
|
86 |
-
def inference_video(video_path, prompt):
|
87 |
-
|
88 |
-
os.system("rm -rf demo_temp")
|
89 |
-
os.makedirs("demo_temp/input_frames", exist_ok=True)
|
90 |
-
os.system(
|
91 |
-
"ffmpeg -i {} -q:v 2 -start_number 0 demo_temp/input_frames/'%05d.jpg'"
|
92 |
-
.format(video_path))
|
93 |
-
input_frames = sorted(os.listdir("demo_temp/input_frames"))
|
94 |
-
image_np = cv2.imread("demo_temp/input_frames/00000.jpg")
|
95 |
-
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
96 |
-
|
97 |
-
height, width, channels = image_np.shape
|
98 |
-
|
99 |
-
image_beit = beit3_preprocess(image_np, 224).to(dtype=video_model.dtype,
|
100 |
-
device=video_model.device)
|
101 |
-
|
102 |
-
input_ids = tokenizer(
|
103 |
-
prompt, return_tensors="pt")["input_ids"].to(device=video_model.device)
|
104 |
-
|
105 |
-
# infer
|
106 |
-
output = video_model.inference(
|
107 |
-
"demo_temp/input_frames",
|
108 |
-
image_beit.unsqueeze(0),
|
109 |
-
input_ids,
|
110 |
-
)
|
111 |
-
# save visualization
|
112 |
-
video_writer = cv2.VideoWriter("demo_temp/out.mp4", fourcc, 30,
|
113 |
-
(width, height))
|
114 |
-
pbar = tqdm(input_frames)
|
115 |
-
pbar.set_description("generating video: ")
|
116 |
-
for i, file in enumerate(pbar):
|
117 |
-
img = cv2.imread(os.path.join("demo_temp/input_frames", file))
|
118 |
-
vis = img + np.array([0, 0, 128]) * output[i][1].transpose(1, 2, 0)
|
119 |
-
vis = np.clip(vis, 0, 255)
|
120 |
-
vis = np.uint8(vis)
|
121 |
-
video_writer.write(vis)
|
122 |
-
video_writer.release()
|
123 |
-
return "demo_temp/out.mp4"
|
124 |
|
125 |
|
126 |
desc = """
|
@@ -132,41 +73,28 @@ desc = """
|
|
132 |
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
|
133 |
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
|
161 |
-
)
|
162 |
-
submit_video = gr.Button(value='Submit',
|
163 |
-
scale=1,
|
164 |
-
variant='primary')
|
165 |
-
|
166 |
-
submit_image.click(fn=inference_image,
|
167 |
-
inputs=[input_image, image_prompt],
|
168 |
-
outputs=output_image)
|
169 |
-
submit_video.click(fn=inference_video,
|
170 |
-
inputs=[input_video, video_prompt],
|
171 |
-
outputs=output_video)
|
172 |
-
demo.launch(show_error=True)
|
|
|
7 |
print("installed", timm.__version__)
|
8 |
import gradio as gr
|
9 |
from inference import sam_preprocess, beit3_preprocess
|
10 |
+
from model.evf_sam import EvfSamModel
|
|
|
11 |
from transformers import AutoTokenizer
|
12 |
import torch
|
|
|
13 |
import numpy as np
|
14 |
import sys
|
15 |
import os
|
|
|
16 |
|
17 |
+
version = "YxZhang/evf-sam"
|
18 |
+
model_type = "ori"
|
19 |
|
20 |
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
version,
|
|
|
26 |
kwargs = {
|
27 |
"torch_dtype": torch.half,
|
28 |
}
|
29 |
+
model = EvfSamModel.from_pretrained(version, low_cpu_mem_usage=True,
|
30 |
+
**kwargs).eval()
|
31 |
+
model.to('cuda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
@spaces.GPU
|
35 |
@torch.no_grad()
|
36 |
+
def pred(image_np, prompt):
|
37 |
original_size_list = [image_np.shape[:2]]
|
38 |
|
39 |
+
image_beit = beit3_preprocess(image_np, 224).to(dtype=model.dtype,
|
40 |
+
device=model.device)
|
41 |
|
42 |
image_sam, resize_shape = sam_preprocess(image_np, model_type=model_type)
|
43 |
+
image_sam = image_sam.to(dtype=model.dtype, device=model.device)
|
|
|
44 |
|
45 |
input_ids = tokenizer(
|
46 |
+
prompt, return_tensors="pt")["input_ids"].to(device=model.device)
|
47 |
|
48 |
# infer
|
49 |
+
pred_mask = model.inference(
|
50 |
image_sam.unsqueeze(0),
|
51 |
image_beit.unsqueeze(0),
|
52 |
input_ids,
|
|
|
61 |
pred_mask[:, :, None].astype(np.uint8) *
|
62 |
np.array([50, 120, 220]) * 0.5)[pred_mask]
|
63 |
|
64 |
+
return visualization / 255.0, pred_mask.astype(np.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
desc = """
|
|
|
73 |
# desc_title_str = '<div align ="center"><img src="assets/logo.jpg" width="20%"><h3> Early Vision-Language Fusion for Text-Prompted Segment Anything Model</h3></div>'
|
74 |
# desc_link_str = '[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2406.20076)'
|
75 |
|
76 |
+
demo = gr.Interface(
|
77 |
+
fn=pred,
|
78 |
+
inputs=[
|
79 |
+
gr.components.Image(type="numpy", label="Image", image_mode="RGB"),
|
80 |
+
gr.components.Textbox(
|
81 |
+
label="Prompt",
|
82 |
+
info=
|
83 |
+
"Use a phrase or sentence to describe the object you want to segment. Currently we only support English"
|
84 |
+
)
|
85 |
+
],
|
86 |
+
outputs=[
|
87 |
+
gr.components.Image(type="numpy", label="visulization"),
|
88 |
+
gr.components.Image(type="numpy", label="mask")
|
89 |
+
],
|
90 |
+
examples=[["assets/zebra.jpg", "zebra top left"],
|
91 |
+
["assets/bus.jpg", "bus going to south common"],
|
92 |
+
[
|
93 |
+
"assets/carrots.jpg",
|
94 |
+
"3carrots in center with ice and greenn leaves"
|
95 |
+
]],
|
96 |
+
title="📷 EVF-SAM: Referring Expression Segmentation",
|
97 |
+
description=desc,
|
98 |
+
allow_flagging="never")
|
99 |
+
# demo.launch()
|
100 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|