presidio_WW / presidio_helpers.py
presidio's picture
Upload 12 files (#2)
57594ac
"""
Helper methods for the Presidio Streamlit app
"""
from typing import List, Optional, Tuple
import logging
import streamlit as st
from presidio_analyzer import (
AnalyzerEngine,
RecognizerResult,
RecognizerRegistry,
PatternRecognizer,
Pattern,
)
from presidio_analyzer.nlp_engine import NlpEngine
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from openai_fake_data_generator import (
call_completion_model,
OpenAIParams,
create_prompt,
)
from presidio_nlp_engine_config import (
create_nlp_engine_with_spacy,
create_nlp_engine_with_flair,
create_nlp_engine_with_transformers,
create_nlp_engine_with_azure_ai_language,
create_nlp_engine_with_stanza,
)
logger = logging.getLogger("presidio-streamlit")
@st.cache_resource
def nlp_engine_and_registry(
model_family: str,
model_path: str,
ta_key: Optional[str] = None,
ta_endpoint: Optional[str] = None,
) -> Tuple[NlpEngine, RecognizerRegistry]:
"""Create the NLP Engine instance based on the requested model.
:param model_family: Which model package to use for NER.
:param model_path: Which model to use for NER. E.g.,
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg"
:param ta_key: Key to the Text Analytics endpoint (only if model_path = "Azure Text Analytics")
:param ta_endpoint: Endpoint of the Text Analytics instance (only if model_path = "Azure Text Analytics")
"""
# Set up NLP Engine according to the model of choice
if "spacy" in model_family.lower():
return create_nlp_engine_with_spacy(model_path)
if "stanza" in model_family.lower():
return create_nlp_engine_with_stanza(model_path)
elif "flair" in model_family.lower():
return create_nlp_engine_with_flair(model_path)
elif "huggingface" in model_family.lower():
return create_nlp_engine_with_transformers(model_path)
elif "azure ai language" in model_family.lower():
return create_nlp_engine_with_azure_ai_language(ta_key, ta_endpoint)
else:
raise ValueError(f"Model family {model_family} not supported")
@st.cache_resource
def analyzer_engine(
model_family: str,
model_path: str,
ta_key: Optional[str] = None,
ta_endpoint: Optional[str] = None,
) -> AnalyzerEngine:
"""Create the NLP Engine instance based on the requested model.
:param model_family: Which model package to use for NER.
:param model_path: Which model to use for NER:
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg"
:param ta_key: Key to the Text Analytics endpoint (only if model_path = "Azure Text Analytics")
:param ta_endpoint: Endpoint of the Text Analytics instance (only if model_path = "Azure Text Analytics")
"""
nlp_engine, registry = nlp_engine_and_registry(
model_family, model_path, ta_key, ta_endpoint
)
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
return analyzer
@st.cache_resource
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
@st.cache_data
def get_supported_entities(
model_family: str, model_path: str, ta_key: str, ta_endpoint: str
):
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine(
model_family, model_path, ta_key, ta_endpoint
).get_supported_entities() + ["GENERIC_PII"]
@st.cache_data
def analyze(
model_family: str, model_path: str, ta_key: str, ta_endpoint: str, **kwargs
):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
if "deny_list" in kwargs and kwargs["deny_list"] is not None:
ad_hoc_recognizer = create_ad_hoc_deny_list_recognizer(kwargs["deny_list"])
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
del kwargs["deny_list"]
if "regex_params" in kwargs and len(kwargs["regex_params"]) > 0:
ad_hoc_recognizer = create_ad_hoc_regex_recognizer(*kwargs["regex_params"])
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
del kwargs["regex_params"]
return analyzer_engine(model_family, model_path, ta_key, ta_endpoint).analyze(
**kwargs
)
def anonymize(
text: str,
operator: str,
analyze_results: List[RecognizerResult],
mask_char: Optional[str] = None,
number_of_chars: Optional[str] = None,
encrypt_key: Optional[str] = None,
):
"""Anonymize identified input using Presidio Anonymizer.
:param text: Full text
:param operator: Operator name
:param mask_char: Mask char (for mask operator)
:param number_of_chars: Number of characters to mask (for mask operator)
:param encrypt_key: Encryption key (for encrypt operator)
:param analyze_results: list of results from presidio analyzer engine
"""
if operator == "mask":
operator_config = {
"type": "mask",
"masking_char": mask_char,
"chars_to_mask": number_of_chars,
"from_end": False,
}
# Define operator config
elif operator == "encrypt":
operator_config = {"key": encrypt_key}
elif operator == "highlight":
operator_config = {"lambda": lambda x: x}
else:
operator_config = None
# Change operator if needed as intermediate step
if operator == "highlight":
operator = "custom"
elif operator == "synthesize":
operator = "replace"
else:
operator = operator
res = anonymizer_engine().anonymize(
text,
analyze_results,
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
)
return res
def annotate(text: str, analyze_results: List[RecognizerResult]):
"""Highlight the identified PII entities on the original text
:param text: Full text
:param analyze_results: list of results from presidio analyzer engine
"""
tokens = []
# Use the anonymizer to resolve overlaps
results = anonymize(
text=text,
operator="highlight",
analyze_results=analyze_results,
)
# sort by start index
results = sorted(results.items, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[: res.start])
# append entity text and entity type
tokens.append((text[res.start : res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end : results[i + 1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end :])
return tokens
def create_fake_data(
text: str,
analyze_results: List[RecognizerResult],
openai_params: OpenAIParams,
):
"""Creates a synthetic version of the text using OpenAI APIs"""
if not openai_params.openai_key:
return "Please provide your OpenAI key"
results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
prompt = create_prompt(results.text)
print(f"Prompt: {prompt}")
fake = call_completion_model(prompt=prompt, openai_params=openai_params)
return fake
@st.cache_data
def call_openai_api(
prompt: str, openai_model_name: str, openai_deployment_name: Optional[str] = None
) -> str:
fake_data = call_completion_model(
prompt, model=openai_model_name, deployment_id=openai_deployment_name
)
return fake_data
def create_ad_hoc_deny_list_recognizer(
deny_list=Optional[List[str]],
) -> Optional[PatternRecognizer]:
if not deny_list:
return None
deny_list_recognizer = PatternRecognizer(
supported_entity="GENERIC_PII", deny_list=deny_list
)
return deny_list_recognizer
def create_ad_hoc_regex_recognizer(
regex: str, entity_type: str, score: float, context: Optional[List[str]] = None
) -> Optional[PatternRecognizer]:
if not regex:
return None
pattern = Pattern(name="Regex pattern", regex=regex, score=score)
regex_recognizer = PatternRecognizer(
supported_entity=entity_type, patterns=[pattern], context=context
)
return regex_recognizer