WoodLB commited on
Commit
14a5102
·
1 Parent(s): 39222d8

finished app no frills

Browse files
Files changed (1) hide show
  1. app.py +18 -17
app.py CHANGED
@@ -23,31 +23,31 @@ Original file is located at
23
  """
24
 
25
  def train_and_inference(api_key, ontology_id, model_run_id):
26
- st.write('thisisstarting')
27
  api_key = api_key # insert Labelbox API key
28
  ontology_id = ontology_id # get the ontology ID from the Settings tab at the top left of your model run
29
  model_run_id = model_run_id #get the model run ID from the settings gear icon on the right side of your Model Run
30
- st.write('1')
31
  import pydantic
32
  st.write(pydantic.__version__)
33
 
34
  import numpy as np
35
- st.write('2')
36
  import tensorflow as tf
37
- st.write('3')
38
  from tensorflow.keras import layers
39
- st.write('4')
40
  from tensorflow.keras.models import Sequential
41
- st.write('5')
42
  from tensorflow.keras.preprocessing.image import ImageDataGenerator
43
- st.write('6')
44
  import os
45
- st.write('7')
46
  import labelbox
47
- st.write('zat')
48
  from labelbox import Client
49
- st.write('8')
50
- st.write('9')
51
  import numpy as np
52
  import tensorflow as tf
53
  from tensorflow.keras import layers
@@ -80,7 +80,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
80
  import uuid
81
  import time
82
  import requests
83
- st.write('madeithrhougtheimports')
84
 
85
  """Connect to labelbox client
86
  Define Model Variables
@@ -192,14 +192,15 @@ def train_and_inference(api_key, ontology_id, model_run_id):
192
  loss='categorical_crossentropy',
193
  metrics=['accuracy'])
194
 
195
-
196
  history = model.fit(
197
  train_ds,
198
  validation_data=validation_ds,
199
  epochs=EPOCHS
200
  )
201
 
202
- """#Run Inference on Model run Datarows"""
 
203
 
204
  import numpy as np
205
  import requests
@@ -266,15 +267,15 @@ def train_and_inference(api_key, ontology_id, model_run_id):
266
 
267
  st.write(prediction_import.errors == [])
268
  if prediction_import.errors == []:
269
- return "you're a wizard harry"
270
 
271
- st.title("Key Input and Button Example")
272
  api_key = st.text_input("Enter your api key:", type="password")
273
  model_run_id = st.text_input("Enter your model run ID:")
274
  ontology_id = st.text_input("Enter your ontology ID:")
275
 
276
  if st.button("Train and run inference"):
277
- st.write('letsgo')
278
  # Check if the key is not empty
279
  if api_key + model_run_id + ontology_id:
280
  result = train_and_inference(api_key, ontology_id, model_run_id)
 
23
  """
24
 
25
  def train_and_inference(api_key, ontology_id, model_run_id):
26
+ # st.write('thisisstarting')
27
  api_key = api_key # insert Labelbox API key
28
  ontology_id = ontology_id # get the ontology ID from the Settings tab at the top left of your model run
29
  model_run_id = model_run_id #get the model run ID from the settings gear icon on the right side of your Model Run
30
+ # st.write('1')
31
  import pydantic
32
  st.write(pydantic.__version__)
33
 
34
  import numpy as np
35
+ # st.write('2')
36
  import tensorflow as tf
37
+ # st.write('3')
38
  from tensorflow.keras import layers
39
+ # st.write('4')
40
  from tensorflow.keras.models import Sequential
41
+ # st.write('5')
42
  from tensorflow.keras.preprocessing.image import ImageDataGenerator
43
+ # st.write('6')
44
  import os
45
+ # st.write('7')
46
  import labelbox
47
+ # st.write('zat')
48
  from labelbox import Client
49
+ # st.write('8')
50
+ # st.write('9')
51
  import numpy as np
52
  import tensorflow as tf
53
  from tensorflow.keras import layers
 
80
  import uuid
81
  import time
82
  import requests
83
+ # st.write('imports')
84
 
85
  """Connect to labelbox client
86
  Define Model Variables
 
192
  loss='categorical_crossentropy',
193
  metrics=['accuracy'])
194
 
195
+ st.write("training")
196
  history = model.fit(
197
  train_ds,
198
  validation_data=validation_ds,
199
  epochs=EPOCHS
200
  )
201
 
202
+ """Run Inference on Model run Datarows"""
203
+ st.write('running Inference')
204
 
205
  import numpy as np
206
  import requests
 
267
 
268
  st.write(prediction_import.errors == [])
269
  if prediction_import.errors == []:
270
+ return "Model Trained and inference ran successfully"
271
 
272
+ st.title("Enter Applicable IDs and keys below")
273
  api_key = st.text_input("Enter your api key:", type="password")
274
  model_run_id = st.text_input("Enter your model run ID:")
275
  ontology_id = st.text_input("Enter your ontology ID:")
276
 
277
  if st.button("Train and run inference"):
278
+ st.write('Starting Up...')
279
  # Check if the key is not empty
280
  if api_key + model_run_id + ontology_id:
281
  result = train_and_inference(api_key, ontology_id, model_run_id)