Spaces:
Runtime error
Runtime error
added video 2 and 3
Browse files
app.py
CHANGED
@@ -60,14 +60,18 @@ def freedatatolb(amount_of_data):
|
|
60 |
verbose = True, # If True, prints information about code execution
|
61 |
)
|
62 |
return results
|
63 |
-
data_amount = st.slider("choose amout of data to add to labelbox",
|
64 |
if st.button("Add data to your Labelbox"):
|
65 |
st.write(f"adding {data_amount} datarows to Labelbox instance")
|
66 |
bing = freedatatolb(data_amount)
|
67 |
-
st.write(bing)
|
68 |
-
|
69 |
st.title("SECTION 2")
|
70 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# -*- coding: utf-8 -*-
|
73 |
"""
|
@@ -83,7 +87,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
|
|
83 |
model_run_id = model_run_id #get the model run ID from the settings gear icon on the right side of your Model Run
|
84 |
# st.write('1')
|
85 |
import pydantic
|
86 |
-
st.write(pydantic.__version__)
|
87 |
|
88 |
import numpy as np
|
89 |
# st.write('2')
|
@@ -206,7 +210,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
|
|
206 |
download_and_save_image(image_url, destination_folder, filename)
|
207 |
|
208 |
"""#Train Model"""
|
209 |
-
st.write(labeldict)
|
210 |
|
211 |
import tensorflow as tf
|
212 |
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
@@ -314,7 +318,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
|
|
314 |
from tensorflow.errors import InvalidArgumentError # Add this import
|
315 |
ontology = client.get_ontology(ontology_id)
|
316 |
label_list = []
|
317 |
-
st.write(ontology)
|
318 |
for datarow in model_run.export_labels(download=True):
|
319 |
try:
|
320 |
label, confidence = make_prediction(datarow['Labeled Data'])
|
|
|
60 |
verbose = True, # If True, prints information about code execution
|
61 |
)
|
62 |
return results
|
63 |
+
data_amount = st.slider("choose amout of data to add to labelbox", 500, 1000)
|
64 |
if st.button("Add data to your Labelbox"):
|
65 |
st.write(f"adding {data_amount} datarows to Labelbox instance")
|
66 |
bing = freedatatolb(data_amount)
|
|
|
|
|
67 |
st.title("SECTION 2")
|
68 |
+
st.header("Create project and bulk classify images")
|
69 |
+
st.video("https://storage.googleapis.com/app-videos/Setting%20up%20Platform%20for%20Training%20a%20Model.mp4")
|
70 |
+
st.write("this video will help you set up a project for storing bulk classifications")
|
71 |
+
st.video("https://storage.googleapis.com/app-videos/Bulk%20Classification%20and%20Training%20Our%20Model.mp4")
|
72 |
+
st.write("this video teaches how to bulk classify the images and set up our model for training")
|
73 |
+
st.title("SECTION 3")
|
74 |
+
st.header("Auto Image classifier training and inference: Imagnet Weights")
|
75 |
|
76 |
# -*- coding: utf-8 -*-
|
77 |
"""
|
|
|
87 |
model_run_id = model_run_id #get the model run ID from the settings gear icon on the right side of your Model Run
|
88 |
# st.write('1')
|
89 |
import pydantic
|
90 |
+
# st.write(pydantic.__version__)
|
91 |
|
92 |
import numpy as np
|
93 |
# st.write('2')
|
|
|
210 |
download_and_save_image(image_url, destination_folder, filename)
|
211 |
|
212 |
"""#Train Model"""
|
213 |
+
# st.write(labeldict)
|
214 |
|
215 |
import tensorflow as tf
|
216 |
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
|
|
318 |
from tensorflow.errors import InvalidArgumentError # Add this import
|
319 |
ontology = client.get_ontology(ontology_id)
|
320 |
label_list = []
|
321 |
+
# st.write(ontology)
|
322 |
for datarow in model_run.export_labels(download=True):
|
323 |
try:
|
324 |
label, confidence = make_prediction(datarow['Labeled Data'])
|