WoodLB commited on
Commit
e0036ed
1 Parent(s): 1cae5f1

added video 2 and 3

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -60,14 +60,18 @@ def freedatatolb(amount_of_data):
60
  verbose = True, # If True, prints information about code execution
61
  )
62
  return results
63
- data_amount = st.slider("choose amout of data to add to labelbox", 250, 1000)
64
  if st.button("Add data to your Labelbox"):
65
  st.write(f"adding {data_amount} datarows to Labelbox instance")
66
  bing = freedatatolb(data_amount)
67
- st.write(bing)
68
-
69
  st.title("SECTION 2")
70
- st.title("Auto Image classifier training and inference: Imagnet Weights")
 
 
 
 
 
 
71
 
72
  # -*- coding: utf-8 -*-
73
  """
@@ -83,7 +87,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
83
  model_run_id = model_run_id #get the model run ID from the settings gear icon on the right side of your Model Run
84
  # st.write('1')
85
  import pydantic
86
- st.write(pydantic.__version__)
87
 
88
  import numpy as np
89
  # st.write('2')
@@ -206,7 +210,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
206
  download_and_save_image(image_url, destination_folder, filename)
207
 
208
  """#Train Model"""
209
- st.write(labeldict)
210
 
211
  import tensorflow as tf
212
  from tensorflow.keras.preprocessing.image import ImageDataGenerator
@@ -314,7 +318,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
314
  from tensorflow.errors import InvalidArgumentError # Add this import
315
  ontology = client.get_ontology(ontology_id)
316
  label_list = []
317
- st.write(ontology)
318
  for datarow in model_run.export_labels(download=True):
319
  try:
320
  label, confidence = make_prediction(datarow['Labeled Data'])
 
60
  verbose = True, # If True, prints information about code execution
61
  )
62
  return results
63
+ data_amount = st.slider("choose amout of data to add to labelbox", 500, 1000)
64
  if st.button("Add data to your Labelbox"):
65
  st.write(f"adding {data_amount} datarows to Labelbox instance")
66
  bing = freedatatolb(data_amount)
 
 
67
  st.title("SECTION 2")
68
+ st.header("Create project and bulk classify images")
69
+ st.video("https://storage.googleapis.com/app-videos/Setting%20up%20Platform%20for%20Training%20a%20Model.mp4")
70
+ st.write("this video will help you set up a project for storing bulk classifications")
71
+ st.video("https://storage.googleapis.com/app-videos/Bulk%20Classification%20and%20Training%20Our%20Model.mp4")
72
+ st.write("this video teaches how to bulk classify the images and set up our model for training")
73
+ st.title("SECTION 3")
74
+ st.header("Auto Image classifier training and inference: Imagnet Weights")
75
 
76
  # -*- coding: utf-8 -*-
77
  """
 
87
  model_run_id = model_run_id #get the model run ID from the settings gear icon on the right side of your Model Run
88
  # st.write('1')
89
  import pydantic
90
+ # st.write(pydantic.__version__)
91
 
92
  import numpy as np
93
  # st.write('2')
 
210
  download_and_save_image(image_url, destination_folder, filename)
211
 
212
  """#Train Model"""
213
+ # st.write(labeldict)
214
 
215
  import tensorflow as tf
216
  from tensorflow.keras.preprocessing.image import ImageDataGenerator
 
318
  from tensorflow.errors import InvalidArgumentError # Add this import
319
  ontology = client.get_ontology(ontology_id)
320
  label_list = []
321
+ # st.write(ontology)
322
  for datarow in model_run.export_labels(download=True):
323
  try:
324
  label, confidence = make_prediction(datarow['Labeled Data'])