Spaces:
Runtime error
Runtime error
data ingestion + training
Browse files
app.py
CHANGED
@@ -2,7 +2,67 @@ import streamlit as st
|
|
2 |
|
3 |
# x = st.slider("Select a value")
|
4 |
# st.write(x, "squared is", x * x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
st.title("Auto Image classifier training and inference: Imagnet Weights")
|
7 |
|
8 |
# -*- coding: utf-8 -*-
|
@@ -284,7 +344,7 @@ def train_and_inference(api_key, ontology_id, model_run_id):
|
|
284 |
return prediction_import.errors
|
285 |
|
286 |
st.title("Enter Applicable IDs and keys below")
|
287 |
-
|
288 |
model_run_id = st.text_input("Enter your model run ID:")
|
289 |
ontology_id = st.text_input("Enter your ontology ID:")
|
290 |
|
|
|
2 |
|
3 |
# x = st.slider("Select a value")
|
4 |
# st.write(x, "squared is", x * x)
|
5 |
+
st.title("If you don't have data in your org, enter your API Click the button below! Otherwise, Skep to section 2")
|
6 |
+
# -*- coding: utf-8 -*-
|
7 |
+
"""
|
8 |
+
Original file is located at
|
9 |
+
https://colab.research.google.com/drive/1nOSff67KXhNgX_XSfnv3xnddobRoaK0d
|
10 |
+
|
11 |
+
"""
|
12 |
|
13 |
+
api_key = st.text_input("Enter your api key:", type="password")
|
14 |
+
|
15 |
+
import labelbox
|
16 |
+
import labelpandas as lp
|
17 |
+
import os
|
18 |
+
import pandas as pd
|
19 |
+
from tensorflow.python.lib.io import file_io
|
20 |
+
import io
|
21 |
+
from pandas import read_csv
|
22 |
+
|
23 |
+
# read csv file from google cloud storage
|
24 |
+
def read_data(gcs_path):
|
25 |
+
file_stream = file_io.FileIO(gcs_path, mode='r')
|
26 |
+
csv_data = read_csv(io.StringIO(file_stream.read()))
|
27 |
+
return csv_data
|
28 |
+
def freedatatolb(amount_of_data):
|
29 |
+
client = lp.Client(api_key)
|
30 |
+
gcs_path = 'https://storage.googleapis.com/solution_accelerator_datasets/images_styles.csv'
|
31 |
+
df = pd.read_csv(gcs_path)
|
32 |
+
df = df.drop(['id', 'season', 'usage', 'year',"gender", "masterCategory", "subCategory", "articleType","baseColour"], axis =1)
|
33 |
+
fields ={"row_data":["link"], # Column containing URL to asset (single)
|
34 |
+
"global_key": ['filename'], # Column containing globalkey value (single, unique)
|
35 |
+
"external_id": ["productDisplayName"], # Column containing external ID value (single)
|
36 |
+
"metadata_string": [], # Column containing string metadata values (multiple)
|
37 |
+
"metadata_number": [], # Column containing number metadata values (multiple)
|
38 |
+
"metadata_datetime": [] # Column containing datetime metadata values (multiple, must be ISO 8601)
|
39 |
+
}
|
40 |
+
columns = {}
|
41 |
+
|
42 |
+
for field in fields.keys():
|
43 |
+
for name in fields[field]:
|
44 |
+
if field.startswith('metadata'):
|
45 |
+
columns[name] = f"{field.split('_')[0]}///{field.split('_')[1]}///{name}"
|
46 |
+
else:
|
47 |
+
columns[name] = field
|
48 |
+
new_df = df.rename(columns=(columns))
|
49 |
+
testdf = new_df.head(amount_of_data)
|
50 |
+
dataset_id = client.lb_client.create_dataset(name = str(gcs_path.split('/')[-1])).uid
|
51 |
+
# dataset_id = client.lb_client.get_dataset("c4b7prd6207850000lljx2hr8").uid
|
52 |
+
results = client.create_data_rows_from_table(
|
53 |
+
table = testdf,
|
54 |
+
dataset_id = dataset_id,
|
55 |
+
skip_duplicates = True, # If True, will skip data rows where a global key is already in use,
|
56 |
+
verbose = True, # If True, prints information about code execution
|
57 |
+
)
|
58 |
+
return results
|
59 |
+
data_amount = st.slider("choose amout of data to add to labelbox", 100, 500)
|
60 |
+
if st.button("Add data to your Labelbox"):
|
61 |
+
st.write(f"adding {data_amount} datarows to Labelbox instance")
|
62 |
+
bing = freedatatolb(data_amount)
|
63 |
+
st.write(bing)
|
64 |
+
|
65 |
+
st.title("SECTION 2")
|
66 |
st.title("Auto Image classifier training and inference: Imagnet Weights")
|
67 |
|
68 |
# -*- coding: utf-8 -*-
|
|
|
344 |
return prediction_import.errors
|
345 |
|
346 |
st.title("Enter Applicable IDs and keys below")
|
347 |
+
|
348 |
model_run_id = st.text_input("Enter your model run ID:")
|
349 |
ontology_id = st.text_input("Enter your ontology ID:")
|
350 |
|