import re import time import torch from transformers import DonutProcessor, VisionEncoderDecoderModel from config import settings from functools import lru_cache import os @lru_cache(maxsize=1) def load_model(): processor = DonutProcessor.from_pretrained(settings.processor) model = VisionEncoderDecoderModel.from_pretrained(settings.model) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) return processor, model, device def process_document_donut(image): worker_pid = os.getpid() print(f"Handling inference request with worker PID: {worker_pid}") start_time = time.time() processor, model, device = load_model() # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids # generate answer outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token end_time = time.time() processing_time = end_time - start_time print(f"Inference done, worker PID: {worker_pid}") return processor.token2json(sequence), processing_time