from flask import Flask, render_template, request, jsonify import requests from dotenv import load_dotenv import os # import namespaces from azure.core.credentials import AzureKeyCredential from azure.ai.language.questionanswering import QuestionAnsweringClient app = Flask(__name__) # Azure Bot Service configuration AZURE_BOT_ENDPOINT = "https://iti109-sectionb.cognitiveservices.azure.com/" AZURE_BOT_KEY = "2ou0CMAjUutj0D4In8U8AkxEIXtCrvYFOBMhqSW4rZ7x6yZ033GdJQQJ99ALACqBBLyXJ3w3AAAaACOGtVJj" # Get Configuration Settings load_dotenv() ai_endpoint = os.getenv('AI_SERVICE_ENDPOINT') ai_key = os.getenv('AI_SERVICE_KEY') ai_project_name = os.getenv('QA_PROJECT_NAME') ai_deployment_name = os.getenv('QA_DEPLOYMENT_NAME') # Create client using endpoint and key credential = AzureKeyCredential(ai_key) ai_client = QuestionAnsweringClient(endpoint=ai_endpoint, credential=credential) @app.route('/') def home(): return render_template('index.html') # HTML file for the web interface @app.route('/ask', methods=['POST']) def ask_bot(): user_question = request.json.get("question", "") if not user_question: return jsonify({"error": "No question provided"}), 400 # Call Azure QnA #response = ai_client.get_answers(question=user_question,project_name=ai_project_name,deployment_name=ai_deployment_name) try: response = ai_client.get_answers(question=user_question, project_name=ai_project_name, deployment_name=ai_deployment_name) #response = requests.post(AZURE_BOT_ENDPOINT, headers=headers, json=data) #@response.raise_for_status() bot_response = response.answers[0].answer if response.answers else "No response from bot" return jsonify({"answer": bot_response}) except requests.exceptions.RequestException as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(debug=True)