|
import gradio as gr |
|
from transformers import AutoModel, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "wop/kosmox-gguf" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModel.from_pretrained(model_name) |
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for user_msg, bot_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if bot_msg: |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
chat_input = tokenizer.chat_template.format( |
|
bos_token=tokenizer.bos_token, |
|
messages=[{"from": "human", "value": m['content']} if m['role'] == 'user' else {"from": "gpt", "value": m['content']} for m in messages] |
|
) |
|
|
|
inputs = tokenizer(chat_input, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=inputs['input_ids'], |
|
max_length=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True |
|
) |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
yield response.strip() |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|