import gradio as gr from transformers import AutoModel, AutoTokenizer import torch # Load the model and tokenizer model_name = "wop/kosmox-gguf" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # Function to generate responses def respond(message, history, system_message, max_tokens, temperature, top_p): # Prepare the chat history messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) # Create the chat input for the model chat_input = tokenizer.chat_template.format( bos_token=tokenizer.bos_token, messages=[{"from": "human", "value": m['content']} if m['role'] == 'user' else {"from": "gpt", "value": m['content']} for m in messages] ) inputs = tokenizer(chat_input, return_tensors="pt") # Generate response with torch.no_grad(): outputs = model.generate( input_ids=inputs['input_ids'], max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response.strip() # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # Launch the demo if __name__ == "__main__": demo.launch()