Rf_prediction / app.py
woshixuhao's picture
Update app.py
b622897
raw
history blame
13.7 kB
import argparse
import os
from rdkit import Chem
import sys
import joblib
sys.modules['sklearn.externals.joblib'] = joblib
from sklearn.externals import joblib
import numpy as np
from rdkit.Chem import Descriptors
from rdkit.Chem import rdMolDescriptors
from xgboost.sklearn import XGBClassifier,XGBRegressor
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from rdkit.Chem import MACCSkeys
import torch.nn as nn
import lightgbm as lgb
from sklearn.ensemble import RandomForestRegressor
import wget
import warnings
import gradio as gr
warnings.filterwarnings("ignore")
Eluent_smiles=['CCCCCC','CC(OCC)=O','C(Cl)Cl','CO','CCOCC']
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--file_path', type=str, default=os.getcwd()+'\TLC_dataset.xlsx', help='path of download dataset')
parser.add_argument('--dipole_path', type=str, default=os.getcwd() + '\compound_list_带化合物分类.xlsx',
help='path of dipole file')
parser.add_argument('--data_range', type=int, default=4944, help='utilized data range,robot:4114,manual:4458,new:4944')
parser.add_argument('--automatic_divide', type=bool, default=False, help='automatically divide dataset by 80% train,10% validate and 10% test')
parser.add_argument('--choose_total', type=int, default=387, help='train total num,robot:387,manual:530')
parser.add_argument('--choose_train', type=int, default=308, help='train num,robot:387,manual:530')
parser.add_argument('--choose_validate', type=int, default=38, help='validate num')
parser.add_argument('--choose_test', type=int, default=38, help='test num')
parser.add_argument('--seed', type=int, default=324, help='random seed for split dataset')
parser.add_argument('--torch_seed', type=int, default=324, help='random seed for torch')
parser.add_argument('--add_dipole', type=bool, default=True, help='add dipole into dataset')
parser.add_argument('--add_molecular_descriptors', type=bool, default=True, help='add molecular_descriptors (分子量(MW)、拓扑极性表面积(TPSA)、可旋转键的个数(NROTB)、氢键供体个数(HBA)、氢键受体个数(HBD)、脂水分配系数值(LogP)) into dataset')
parser.add_argument('--add_MACCkeys', type=bool, default=True,help='add MACCSkeys into dataset')
parser.add_argument('--add_eluent_matrix', type=bool, default=True,help='add eluent matrix into dataset')
parser.add_argument('--test_mode', type=str, default='robot', help='manual data or robot data or fix, costum test data')
parser.add_argument('--use_model', type=str, default='Ensemble',help='the utilized model (XGB,LGB,ANN,RF,Ensemble,Bayesian)')
parser.add_argument('--download_data', type=bool, default=False, help='use local dataset or download from dataset')
parser.add_argument('--use_sigmoid', type=bool, default=True, help='use sigmoid')
parser.add_argument('--shuffle_array', type=bool, default=True, help='shuffle_array')
parser.add_argument('--characterization_mode', type=str, default='standard',
help='the characterization mode for the dataset, including standard, precise_TPSA, no_multi')
#---------------parapmeters for plot---------------------
parser.add_argument('--plot_col_num', type=int, default=4, help='The col_num in plot')
parser.add_argument('--plot_row_num', type=int, default=4, help='The row_num in plot')
parser.add_argument('--plot_importance_num', type=int, default=10, help='The max importance num in plot')
#--------------parameters For LGB-------------------
parser.add_argument('--LGB_max_depth', type=int, default=5, help='max_depth for LGB')
parser.add_argument('--LGB_num_leaves', type=int, default=25, help='num_leaves for LGB')
parser.add_argument('--LGB_learning_rate', type=float, default=0.007, help='learning_rate for LGB')
parser.add_argument('--LGB_n_estimators', type=int, default=1000, help='n_estimators for LGB')
parser.add_argument('--LGB_early_stopping_rounds', type=int, default=200, help='early_stopping_rounds for LGB')
#---------------parameters for XGB-----------------------
parser.add_argument('--XGB_n_estimators', type=int, default=200, help='n_estimators for XGB')
parser.add_argument('--XGB_max_depth', type=int, default=3, help='max_depth for XGB')
parser.add_argument('--XGB_learning_rate', type=float, default=0.1, help='learning_rate for XGB')
#---------------parameters for RF------------------------
parser.add_argument('--RF_n_estimators', type=int, default=1000, help='n_estimators for RF')
parser.add_argument('--RF_random_state', type=int, default=1, help='random_state for RF')
parser.add_argument('--RF_n_jobs', type=int, default=1, help='n_jobs for RF')
#--------------parameters for ANN-----------------------
parser.add_argument('--NN_hidden_neuron', type=int, default=128, help='hidden neurons for NN')
parser.add_argument('--NN_optimizer', type=str, default='Adam', help='optimizer for NN (Adam,SGD,RMSprop)')
parser.add_argument('--NN_lr', type=float, default=0.005, help='learning rate for NN')
parser.add_argument('--NN_model_save_location', type=str, default=os.getcwd()+'\model_save_NN', help='learning rate for NN')
parser.add_argument('--NN_max_epoch', type=int, default=5000, help='max training epoch for NN')
parser.add_argument('--NN_add_sigmoid', type=bool, default=True, help='whether add sigmoid in NN')
parser.add_argument('--NN_add_PINN', type=bool, default=False, help='whether add PINN in NN')
parser.add_argument('--NN_epi', type=float, default=100.0, help='The coef of PINN Loss in NN')
config = parser.parse_args()
config.device = 'cpu'
return config
class ANN(nn.Module):
'''
Construct artificial neural network
'''
def __init__(self, in_neuron, hidden_neuron, out_neuron,config):
super(ANN, self).__init__()
self.input_layer = nn.Linear(in_neuron, hidden_neuron)
self.hidden_layer = nn.Linear(hidden_neuron, hidden_neuron)
self.output_layer = nn.Linear(hidden_neuron, out_neuron)
self.NN_add_sigmoid=config.NN_add_sigmoid
def forward(self, x):
x = self.input_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.hidden_layer(x)
x = F.leaky_relu(x)
x = self.output_layer(x)
if self.NN_add_sigmoid==True:
x = F.sigmoid(x)
return x
class Model_ML():
def __init__(self,config,X_test):
super(Model_ML, self).__init__()
self.X_test=X_test
self.seed=config.seed
self.torch_seed=config.seed
self.config=config
self.add_dipole = config.add_dipole
self.add_molecular_descriptors = config.add_molecular_descriptors
self.add_eluent_matrix=config.add_eluent_matrix
self.use_sigmoid=config.use_sigmoid
self.use_model=config.use_model
self.LGB_max_depth=config.LGB_max_depth
self.LGB_num_leaves=config.LGB_num_leaves
self.LGB_learning_rate=config.LGB_learning_rate
self.LGB_n_estimators=config.LGB_n_estimators
self.LGB_early_stopping_rounds=config.LGB_early_stopping_rounds
self.XGB_n_estimators=config.XGB_n_estimators
self.XGB_max_depth = config.XGB_max_depth
self.XGB_learning_rate = config.XGB_learning_rate
self.RF_n_estimators=config.RF_n_estimators
self.RF_random_state=config.RF_random_state
self.RF_n_jobs=config.RF_n_jobs
self.NN_hidden_neuron=config.NN_hidden_neuron
self.NN_optimizer=config.NN_optimizer
self.NN_lr= config.NN_lr
self.NN_model_save_location=config.NN_model_save_location
self.NN_max_epoch=config.NN_max_epoch
self.NN_add_PINN=config.NN_add_PINN
self.NN_epi=config.NN_epi
self.device=config.device
self.plot_row_num=config.plot_row_num
self.plot_col_num=config.plot_col_num
self.plot_importance_num=config.plot_importance_num
def load_model(self):
model_LGB = lgb.LGBMRegressor(objective='regression', max_depth=self.LGB_max_depth,
num_leaves=self.LGB_num_leaves,
learning_rate=self.LGB_learning_rate, n_estimators=self.LGB_n_estimators)
model_XGB = XGBRegressor(seed=self.seed,
n_estimators=self.XGB_n_estimators,
max_depth=self.XGB_max_depth,
eval_metric='rmse',
learning_rate=self.XGB_learning_rate,
min_child_weight=1,
subsample=1,
colsample_bytree=1,
colsample_bylevel=1,
gamma=0)
model_RF = RandomForestRegressor(n_estimators=self.RF_n_estimators,
criterion='mse',
random_state=self.RF_random_state,
n_jobs=self.RF_n_jobs)
Net = ANN(self.X_test.shape[1], self.NN_hidden_neuron, 1, config=self.config).to(self.device)
#model_LGB = joblib.load('model_LGB.pkl')
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_LGB.pkl')
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_XGB.pkl')
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_RF.pkl')
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_ANN.pkl')
model_LGB = joblib.load('model_LGB.pkl')
model_XGB = joblib.load('model_XGB.pkl')
model_RF = joblib.load('model_RF.pkl')
Net.load_state_dict(torch.load('model_ANN.pkl',map_location=torch.device('cpu')))
return model_LGB,model_XGB,model_RF,Net
def get_Rf(self):
model_LGB, model_XGB, model_RF, model_ANN = Model_ML.load_model(self)
X_test_ANN = Variable(torch.from_numpy(self.X_test.astype(np.float32)).to(self.device), requires_grad=True)
y_pred_ANN = model_ANN(X_test_ANN).cpu().data.numpy()
y_pred_ANN = y_pred_ANN.reshape(y_pred_ANN.shape[0], )
y_pred_XGB = model_XGB.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_XGB = 1 / (1 + np.exp(-y_pred_XGB))
y_pred_LGB = model_LGB.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_LGB = 1 / (1 + np.exp(-y_pred_LGB))
y_pred_RF = model_RF.predict(self.X_test)
if self.use_sigmoid == True:
y_pred_RF = 1 / (1 + np.exp(-y_pred_RF))
y_pred = (0.2 * y_pred_LGB + 0.2 * y_pred_XGB + 0.2 * y_pred_RF + 0.4 * y_pred_ANN)
return y_pred
def get_descriptor(smiles,ratio):
compound_mol = Chem.MolFromSmiles(smiles)
descriptor=[]
descriptor.append(Descriptors.ExactMolWt(compound_mol))
descriptor.append(Chem.rdMolDescriptors.CalcTPSA(compound_mol))
descriptor.append(Descriptors.NumRotatableBonds(compound_mol)) # Number of rotable bonds
descriptor.append(Descriptors.NumHDonors(compound_mol)) # Number of H bond donors
descriptor.append(Descriptors.NumHAcceptors(compound_mol)) # Number of H bond acceptors
descriptor.append(Descriptors.MolLogP(compound_mol)) # LogP
descriptor=np.array(descriptor)*ratio
return descriptor
def get_eluent_descriptor(eluent):
eluent=np.array(eluent)
des = np.zeros([6,])
for i in range(eluent.shape[0]):
if eluent[i] != 0:
e_descriptors = get_descriptor(Eluent_smiles[i], eluent[i])
des+=e_descriptors
return des
def get_data_from_smile(smile, eluent_list):
compound_mol = Chem.MolFromSmiles(smile)
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
fingerprint = np.array([x for x in Finger])
compound_finger = fingerprint
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
X_test = np.zeros([1, 179])
X_test[0, 0:167] = compound_finger
X_test[0, 167:173] = 0
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
eluent_array = get_eluent_descriptor(eluent_list)
eluent_array = np.array(eluent_array)
X_test[0, 167:173] = eluent_array
return X_test
def predict_single(smile,PE,EA,DCM,MeOH,Et20):
config = parse_args()
config.add_dipole = False
eluent_sum=PE+EA+DCM+MeOH+Et20
eluent_list=[PE/eluent_sum,EA/eluent_sum,DCM/eluent_sum,MeOH/eluent_sum,Et20/eluent_sum]
X_test=get_data_from_smile(smile,eluent_list)
Model = Model_ML(config,X_test)
Rf=Model.get_Rf()
return Rf[0]
if __name__=='__main__':
demo = gr.Interface(fn=predict_single, inputs=["text", "number","number","number","number","number"], outputs='number')
demo.launch()
# smile='O=C(OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1)C'
# eluent=[0,0.9,0,0,0]
# print(predict_single(smile,1,0,0,0,0))