Spaces:
Running
Running
Commit
·
6df09d4
1
Parent(s):
e874b08
Upload 2 files
Browse files- app.py +267 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from rdkit import Chem
|
4 |
+
import sys
|
5 |
+
import joblib
|
6 |
+
sys.modules['sklearn.externals.joblib'] = joblib
|
7 |
+
from sklearn.externals import joblib
|
8 |
+
import numpy as np
|
9 |
+
from rdkit.Chem import Descriptors
|
10 |
+
from rdkit.Chem import rdMolDescriptors
|
11 |
+
from xgboost.sklearn import XGBClassifier,XGBRegressor
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.autograd import Variable
|
15 |
+
from rdkit.Chem import MACCSkeys
|
16 |
+
import torch.nn as nn
|
17 |
+
import lightgbm as lgb
|
18 |
+
from sklearn.ensemble import RandomForestRegressor
|
19 |
+
import wget
|
20 |
+
import warnings
|
21 |
+
import gradio as gr
|
22 |
+
warnings.filterwarnings("ignore")
|
23 |
+
|
24 |
+
Eluent_smiles=['CCCCCC','CC(OCC)=O','C(Cl)Cl','CO','CCOCC']
|
25 |
+
def parse_args():
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
parser.add_argument('--file_path', type=str, default=os.getcwd()+'\TLC_dataset.xlsx', help='path of download dataset')
|
28 |
+
parser.add_argument('--dipole_path', type=str, default=os.getcwd() + '\compound_list_带化合物分类.xlsx',
|
29 |
+
help='path of dipole file')
|
30 |
+
parser.add_argument('--data_range', type=int, default=4944, help='utilized data range,robot:4114,manual:4458,new:4944')
|
31 |
+
parser.add_argument('--automatic_divide', type=bool, default=False, help='automatically divide dataset by 80% train,10% validate and 10% test')
|
32 |
+
parser.add_argument('--choose_total', type=int, default=387, help='train total num,robot:387,manual:530')
|
33 |
+
parser.add_argument('--choose_train', type=int, default=308, help='train num,robot:387,manual:530')
|
34 |
+
parser.add_argument('--choose_validate', type=int, default=38, help='validate num')
|
35 |
+
parser.add_argument('--choose_test', type=int, default=38, help='test num')
|
36 |
+
parser.add_argument('--seed', type=int, default=324, help='random seed for split dataset')
|
37 |
+
parser.add_argument('--torch_seed', type=int, default=324, help='random seed for torch')
|
38 |
+
parser.add_argument('--add_dipole', type=bool, default=True, help='add dipole into dataset')
|
39 |
+
parser.add_argument('--add_molecular_descriptors', type=bool, default=True, help='add molecular_descriptors (分子量(MW)、拓扑极性表面积(TPSA)、可旋转键的个数(NROTB)、氢键供体个数(HBA)、氢键受体个数(HBD)、脂水分配系数值(LogP)) into dataset')
|
40 |
+
parser.add_argument('--add_MACCkeys', type=bool, default=True,help='add MACCSkeys into dataset')
|
41 |
+
parser.add_argument('--add_eluent_matrix', type=bool, default=True,help='add eluent matrix into dataset')
|
42 |
+
parser.add_argument('--test_mode', type=str, default='robot', help='manual data or robot data or fix, costum test data')
|
43 |
+
parser.add_argument('--use_model', type=str, default='Ensemble',help='the utilized model (XGB,LGB,ANN,RF,Ensemble,Bayesian)')
|
44 |
+
parser.add_argument('--download_data', type=bool, default=False, help='use local dataset or download from dataset')
|
45 |
+
parser.add_argument('--use_sigmoid', type=bool, default=True, help='use sigmoid')
|
46 |
+
parser.add_argument('--shuffle_array', type=bool, default=True, help='shuffle_array')
|
47 |
+
parser.add_argument('--characterization_mode', type=str, default='standard',
|
48 |
+
help='the characterization mode for the dataset, including standard, precise_TPSA, no_multi')
|
49 |
+
|
50 |
+
#---------------parapmeters for plot---------------------
|
51 |
+
parser.add_argument('--plot_col_num', type=int, default=4, help='The col_num in plot')
|
52 |
+
parser.add_argument('--plot_row_num', type=int, default=4, help='The row_num in plot')
|
53 |
+
parser.add_argument('--plot_importance_num', type=int, default=10, help='The max importance num in plot')
|
54 |
+
#--------------parameters For LGB-------------------
|
55 |
+
parser.add_argument('--LGB_max_depth', type=int, default=5, help='max_depth for LGB')
|
56 |
+
parser.add_argument('--LGB_num_leaves', type=int, default=25, help='num_leaves for LGB')
|
57 |
+
parser.add_argument('--LGB_learning_rate', type=float, default=0.007, help='learning_rate for LGB')
|
58 |
+
parser.add_argument('--LGB_n_estimators', type=int, default=1000, help='n_estimators for LGB')
|
59 |
+
parser.add_argument('--LGB_early_stopping_rounds', type=int, default=200, help='early_stopping_rounds for LGB')
|
60 |
+
|
61 |
+
#---------------parameters for XGB-----------------------
|
62 |
+
parser.add_argument('--XGB_n_estimators', type=int, default=200, help='n_estimators for XGB')
|
63 |
+
parser.add_argument('--XGB_max_depth', type=int, default=3, help='max_depth for XGB')
|
64 |
+
parser.add_argument('--XGB_learning_rate', type=float, default=0.1, help='learning_rate for XGB')
|
65 |
+
|
66 |
+
#---------------parameters for RF------------------------
|
67 |
+
parser.add_argument('--RF_n_estimators', type=int, default=1000, help='n_estimators for RF')
|
68 |
+
parser.add_argument('--RF_random_state', type=int, default=1, help='random_state for RF')
|
69 |
+
parser.add_argument('--RF_n_jobs', type=int, default=1, help='n_jobs for RF')
|
70 |
+
|
71 |
+
#--------------parameters for ANN-----------------------
|
72 |
+
parser.add_argument('--NN_hidden_neuron', type=int, default=128, help='hidden neurons for NN')
|
73 |
+
parser.add_argument('--NN_optimizer', type=str, default='Adam', help='optimizer for NN (Adam,SGD,RMSprop)')
|
74 |
+
parser.add_argument('--NN_lr', type=float, default=0.005, help='learning rate for NN')
|
75 |
+
parser.add_argument('--NN_model_save_location', type=str, default=os.getcwd()+'\model_save_NN', help='learning rate for NN')
|
76 |
+
parser.add_argument('--NN_max_epoch', type=int, default=5000, help='max training epoch for NN')
|
77 |
+
parser.add_argument('--NN_add_sigmoid', type=bool, default=True, help='whether add sigmoid in NN')
|
78 |
+
parser.add_argument('--NN_add_PINN', type=bool, default=False, help='whether add PINN in NN')
|
79 |
+
parser.add_argument('--NN_epi', type=float, default=100.0, help='The coef of PINN Loss in NN')
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
config = parser.parse_args()
|
84 |
+
config.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
85 |
+
return config
|
86 |
+
|
87 |
+
class ANN(nn.Module):
|
88 |
+
'''
|
89 |
+
Construct artificial neural network
|
90 |
+
'''
|
91 |
+
def __init__(self, in_neuron, hidden_neuron, out_neuron,config):
|
92 |
+
super(ANN, self).__init__()
|
93 |
+
self.input_layer = nn.Linear(in_neuron, hidden_neuron)
|
94 |
+
self.hidden_layer = nn.Linear(hidden_neuron, hidden_neuron)
|
95 |
+
self.output_layer = nn.Linear(hidden_neuron, out_neuron)
|
96 |
+
self.NN_add_sigmoid=config.NN_add_sigmoid
|
97 |
+
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = self.input_layer(x)
|
101 |
+
x = F.leaky_relu(x)
|
102 |
+
x = self.hidden_layer(x)
|
103 |
+
x = F.leaky_relu(x)
|
104 |
+
x = self.hidden_layer(x)
|
105 |
+
x = F.leaky_relu(x)
|
106 |
+
x = self.hidden_layer(x)
|
107 |
+
x = F.leaky_relu(x)
|
108 |
+
x = self.output_layer(x)
|
109 |
+
if self.NN_add_sigmoid==True:
|
110 |
+
x = F.sigmoid(x)
|
111 |
+
return x
|
112 |
+
|
113 |
+
class Model_ML():
|
114 |
+
def __init__(self,config,X_test):
|
115 |
+
super(Model_ML, self).__init__()
|
116 |
+
self.X_test=X_test
|
117 |
+
self.seed=config.seed
|
118 |
+
self.torch_seed=config.seed
|
119 |
+
self.config=config
|
120 |
+
self.add_dipole = config.add_dipole
|
121 |
+
self.add_molecular_descriptors = config.add_molecular_descriptors
|
122 |
+
self.add_eluent_matrix=config.add_eluent_matrix
|
123 |
+
self.use_sigmoid=config.use_sigmoid
|
124 |
+
|
125 |
+
self.use_model=config.use_model
|
126 |
+
self.LGB_max_depth=config.LGB_max_depth
|
127 |
+
self.LGB_num_leaves=config.LGB_num_leaves
|
128 |
+
self.LGB_learning_rate=config.LGB_learning_rate
|
129 |
+
self.LGB_n_estimators=config.LGB_n_estimators
|
130 |
+
self.LGB_early_stopping_rounds=config.LGB_early_stopping_rounds
|
131 |
+
|
132 |
+
self.XGB_n_estimators=config.XGB_n_estimators
|
133 |
+
self.XGB_max_depth = config.XGB_max_depth
|
134 |
+
self.XGB_learning_rate = config.XGB_learning_rate
|
135 |
+
|
136 |
+
self.RF_n_estimators=config.RF_n_estimators
|
137 |
+
self.RF_random_state=config.RF_random_state
|
138 |
+
self.RF_n_jobs=config.RF_n_jobs
|
139 |
+
|
140 |
+
self.NN_hidden_neuron=config.NN_hidden_neuron
|
141 |
+
self.NN_optimizer=config.NN_optimizer
|
142 |
+
self.NN_lr= config.NN_lr
|
143 |
+
self.NN_model_save_location=config.NN_model_save_location
|
144 |
+
self.NN_max_epoch=config.NN_max_epoch
|
145 |
+
self.NN_add_PINN=config.NN_add_PINN
|
146 |
+
self.NN_epi=config.NN_epi
|
147 |
+
self.device=config.device
|
148 |
+
|
149 |
+
self.plot_row_num=config.plot_row_num
|
150 |
+
self.plot_col_num=config.plot_col_num
|
151 |
+
self.plot_importance_num=config.plot_importance_num
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def load_model(self):
|
156 |
+
model_LGB = lgb.LGBMRegressor(objective='regression', max_depth=self.LGB_max_depth,
|
157 |
+
num_leaves=self.LGB_num_leaves,
|
158 |
+
learning_rate=self.LGB_learning_rate, n_estimators=self.LGB_n_estimators)
|
159 |
+
model_XGB = XGBRegressor(seed=self.seed,
|
160 |
+
n_estimators=self.XGB_n_estimators,
|
161 |
+
max_depth=self.XGB_max_depth,
|
162 |
+
eval_metric='rmse',
|
163 |
+
learning_rate=self.XGB_learning_rate,
|
164 |
+
min_child_weight=1,
|
165 |
+
subsample=1,
|
166 |
+
colsample_bytree=1,
|
167 |
+
colsample_bylevel=1,
|
168 |
+
gamma=0)
|
169 |
+
|
170 |
+
model_RF = RandomForestRegressor(n_estimators=self.RF_n_estimators,
|
171 |
+
criterion='mse',
|
172 |
+
random_state=self.RF_random_state,
|
173 |
+
n_jobs=self.RF_n_jobs)
|
174 |
+
|
175 |
+
Net = ANN(self.X_test.shape[1], self.NN_hidden_neuron, 1, config=self.config).to(self.device)
|
176 |
+
#model_LGB = joblib.load('model_LGB.pkl')
|
177 |
+
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_LGB.pkl')
|
178 |
+
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_XGB.pkl')
|
179 |
+
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_RF.pkl')
|
180 |
+
wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_ANN.pkl')
|
181 |
+
model_LGB = joblib.load('model_LGB.pkl')
|
182 |
+
model_XGB = joblib.load('model_XGB.pkl')
|
183 |
+
model_RF = joblib.load('model_RF.pkl')
|
184 |
+
Net.load_state_dict(torch.load('model_ANN.pkl'))
|
185 |
+
return model_LGB,model_XGB,model_RF,Net
|
186 |
+
|
187 |
+
def get_Rf(self):
|
188 |
+
model_LGB, model_XGB, model_RF, model_ANN = Model_ML.load_model(self)
|
189 |
+
|
190 |
+
X_test_ANN = Variable(torch.from_numpy(self.X_test.astype(np.float32)).to(self.device), requires_grad=True)
|
191 |
+
y_pred_ANN = model_ANN(X_test_ANN).cpu().data.numpy()
|
192 |
+
y_pred_ANN = y_pred_ANN.reshape(y_pred_ANN.shape[0], )
|
193 |
+
|
194 |
+
|
195 |
+
y_pred_XGB = model_XGB.predict(self.X_test)
|
196 |
+
if self.use_sigmoid == True:
|
197 |
+
y_pred_XGB = 1 / (1 + np.exp(-y_pred_XGB))
|
198 |
+
|
199 |
+
y_pred_LGB = model_LGB.predict(self.X_test)
|
200 |
+
if self.use_sigmoid == True:
|
201 |
+
y_pred_LGB = 1 / (1 + np.exp(-y_pred_LGB))
|
202 |
+
|
203 |
+
y_pred_RF = model_RF.predict(self.X_test)
|
204 |
+
if self.use_sigmoid == True:
|
205 |
+
y_pred_RF = 1 / (1 + np.exp(-y_pred_RF))
|
206 |
+
|
207 |
+
y_pred = (0.2 * y_pred_LGB + 0.2 * y_pred_XGB + 0.2 * y_pred_RF + 0.4 * y_pred_ANN)
|
208 |
+
return y_pred
|
209 |
+
|
210 |
+
def get_descriptor(smiles,ratio):
|
211 |
+
compound_mol = Chem.MolFromSmiles(smiles)
|
212 |
+
descriptor=[]
|
213 |
+
descriptor.append(Descriptors.ExactMolWt(compound_mol))
|
214 |
+
descriptor.append(Chem.rdMolDescriptors.CalcTPSA(compound_mol))
|
215 |
+
descriptor.append(Descriptors.NumRotatableBonds(compound_mol)) # Number of rotable bonds
|
216 |
+
descriptor.append(Descriptors.NumHDonors(compound_mol)) # Number of H bond donors
|
217 |
+
descriptor.append(Descriptors.NumHAcceptors(compound_mol)) # Number of H bond acceptors
|
218 |
+
descriptor.append(Descriptors.MolLogP(compound_mol)) # LogP
|
219 |
+
descriptor=np.array(descriptor)*ratio
|
220 |
+
return descriptor
|
221 |
+
|
222 |
+
def get_eluent_descriptor(eluent):
|
223 |
+
eluent=np.array(eluent)
|
224 |
+
des = np.zeros([6,])
|
225 |
+
for i in range(eluent.shape[0]):
|
226 |
+
if eluent[i] != 0:
|
227 |
+
e_descriptors = get_descriptor(Eluent_smiles[i], eluent[i])
|
228 |
+
des+=e_descriptors
|
229 |
+
return des
|
230 |
+
|
231 |
+
def get_data_from_smile(smile, eluent_list):
|
232 |
+
compound_mol = Chem.MolFromSmiles(smile)
|
233 |
+
Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile))
|
234 |
+
fingerprint = np.array([x for x in Finger])
|
235 |
+
compound_finger = fingerprint
|
236 |
+
compound_MolWt = Descriptors.ExactMolWt(compound_mol)
|
237 |
+
compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol)
|
238 |
+
compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds
|
239 |
+
compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors
|
240 |
+
compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors
|
241 |
+
compound_LogP = Descriptors.MolLogP(compound_mol) # LogP
|
242 |
+
X_test = np.zeros([1, 179])
|
243 |
+
X_test[0, 0:167] = compound_finger
|
244 |
+
X_test[0, 167:173] = 0
|
245 |
+
X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP]
|
246 |
+
|
247 |
+
eluent_array = get_eluent_descriptor(eluent_list)
|
248 |
+
eluent_array = np.array(eluent_array)
|
249 |
+
X_test[0, 167:173] = eluent_array
|
250 |
+
|
251 |
+
return X_test
|
252 |
+
|
253 |
+
def predict_single(smile,PE,EA,DCM,MeOH,Et20):
|
254 |
+
config = parse_args()
|
255 |
+
config.add_dipole = False
|
256 |
+
eluent_list=[PE,EA,DCM,MeOH,Et20]
|
257 |
+
X_test=get_data_from_smile(smile,eluent_list)
|
258 |
+
Model = Model_ML(config,X_test)
|
259 |
+
Rf=Model.get_Rf()
|
260 |
+
return Rf[0]
|
261 |
+
|
262 |
+
if __name__=='__main__':
|
263 |
+
demo = gr.Interface(fn=predict_single, inputs=["text", "number","number","number","number","number"], outputs='number')
|
264 |
+
demo.launch(share=True)
|
265 |
+
# smile='O=C(OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1)C'
|
266 |
+
# eluent=[0,0.9,0,0,0]
|
267 |
+
# print(predict_single(smile,1,0,0,0,0))
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.29.0
|
2 |
+
joblib==1.2.0
|
3 |
+
lightgbm==3.3.5
|
4 |
+
numpy==1.24.3
|
5 |
+
rdkit==2023.3.1
|
6 |
+
scikit_learn==1.2.2
|
7 |
+
torch==2.0.1+cu117
|
8 |
+
wget==3.2
|
9 |
+
xgboost==1.7.5
|