import argparse import os from rdkit import Chem import sys import joblib sys.modules['sklearn.externals.joblib'] = joblib from sklearn.externals import joblib import numpy as np from rdkit.Chem import Descriptors from rdkit.Chem import rdMolDescriptors from xgboost.sklearn import XGBClassifier,XGBRegressor import torch import torch.nn.functional as F from torch.autograd import Variable from rdkit.Chem import MACCSkeys import torch.nn as nn import lightgbm as lgb from sklearn.ensemble import RandomForestRegressor import wget import warnings import gradio as gr import pandas as pd from matplotlib.backends.backend_agg import FigureCanvasAgg import PIL.Image as Image import matplotlib.pyplot as plt import pandas as pd import time warnings.filterwarnings("ignore") Eluent_smiles=['CCCCCC','CC(OCC)=O','C(Cl)Cl','CO','CCOCC'] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--file_path', type=str, default=os.getcwd()+'\TLC_dataset.xlsx', help='path of download dataset') parser.add_argument('--dipole_path', type=str, default=os.getcwd() + '\compound_list_带化合物分类.xlsx', help='path of dipole file') parser.add_argument('--data_range', type=int, default=4944, help='utilized data range,robot:4114,manual:4458,new:4944') parser.add_argument('--automatic_divide', type=bool, default=False, help='automatically divide dataset by 80% train,10% validate and 10% test') parser.add_argument('--choose_total', type=int, default=387, help='train total num,robot:387,manual:530') parser.add_argument('--choose_train', type=int, default=308, help='train num,robot:387,manual:530') parser.add_argument('--choose_validate', type=int, default=38, help='validate num') parser.add_argument('--choose_test', type=int, default=38, help='test num') parser.add_argument('--seed', type=int, default=324, help='random seed for split dataset') parser.add_argument('--torch_seed', type=int, default=324, help='random seed for torch') parser.add_argument('--add_dipole', type=bool, default=True, help='add dipole into dataset') parser.add_argument('--add_molecular_descriptors', type=bool, default=True, help='add molecular_descriptors (分子量(MW)、拓扑极性表面积(TPSA)、可旋转键的个数(NROTB)、氢键供体个数(HBA)、氢键受体个数(HBD)、脂水分配系数值(LogP)) into dataset') parser.add_argument('--add_MACCkeys', type=bool, default=True,help='add MACCSkeys into dataset') parser.add_argument('--add_eluent_matrix', type=bool, default=True,help='add eluent matrix into dataset') parser.add_argument('--test_mode', type=str, default='robot', help='manual data or robot data or fix, costum test data') parser.add_argument('--use_model', type=str, default='Ensemble',help='the utilized model (XGB,LGB,ANN,RF,Ensemble,Bayesian)') parser.add_argument('--download_data', type=bool, default=False, help='use local dataset or download from dataset') parser.add_argument('--use_sigmoid', type=bool, default=True, help='use sigmoid') parser.add_argument('--shuffle_array', type=bool, default=True, help='shuffle_array') parser.add_argument('--characterization_mode', type=str, default='standard', help='the characterization mode for the dataset, including standard, precise_TPSA, no_multi') #---------------parapmeters for plot--------------------- parser.add_argument('--plot_col_num', type=int, default=4, help='The col_num in plot') parser.add_argument('--plot_row_num', type=int, default=4, help='The row_num in plot') parser.add_argument('--plot_importance_num', type=int, default=10, help='The max importance num in plot') #--------------parameters For LGB------------------- parser.add_argument('--LGB_max_depth', type=int, default=5, help='max_depth for LGB') parser.add_argument('--LGB_num_leaves', type=int, default=25, help='num_leaves for LGB') parser.add_argument('--LGB_learning_rate', type=float, default=0.007, help='learning_rate for LGB') parser.add_argument('--LGB_n_estimators', type=int, default=1000, help='n_estimators for LGB') parser.add_argument('--LGB_early_stopping_rounds', type=int, default=200, help='early_stopping_rounds for LGB') #---------------parameters for XGB----------------------- parser.add_argument('--XGB_n_estimators', type=int, default=200, help='n_estimators for XGB') parser.add_argument('--XGB_max_depth', type=int, default=3, help='max_depth for XGB') parser.add_argument('--XGB_learning_rate', type=float, default=0.1, help='learning_rate for XGB') #---------------parameters for RF------------------------ parser.add_argument('--RF_n_estimators', type=int, default=1000, help='n_estimators for RF') parser.add_argument('--RF_random_state', type=int, default=1, help='random_state for RF') parser.add_argument('--RF_n_jobs', type=int, default=1, help='n_jobs for RF') #--------------parameters for ANN----------------------- parser.add_argument('--NN_hidden_neuron', type=int, default=128, help='hidden neurons for NN') parser.add_argument('--NN_optimizer', type=str, default='Adam', help='optimizer for NN (Adam,SGD,RMSprop)') parser.add_argument('--NN_lr', type=float, default=0.005, help='learning rate for NN') parser.add_argument('--NN_model_save_location', type=str, default=os.getcwd()+'\model_save_NN', help='learning rate for NN') parser.add_argument('--NN_max_epoch', type=int, default=5000, help='max training epoch for NN') parser.add_argument('--NN_add_sigmoid', type=bool, default=True, help='whether add sigmoid in NN') parser.add_argument('--NN_add_PINN', type=bool, default=False, help='whether add PINN in NN') parser.add_argument('--NN_epi', type=float, default=100.0, help='The coef of PINN Loss in NN') config = parser.parse_args() config.device = 'cpu' return config class ANN(nn.Module): ''' Construct artificial neural network ''' def __init__(self, in_neuron, hidden_neuron, out_neuron,config): super(ANN, self).__init__() self.input_layer = nn.Linear(in_neuron, hidden_neuron) self.hidden_layer = nn.Linear(hidden_neuron, hidden_neuron) self.output_layer = nn.Linear(hidden_neuron, out_neuron) self.NN_add_sigmoid=config.NN_add_sigmoid def forward(self, x): x = self.input_layer(x) x = F.leaky_relu(x) x = self.hidden_layer(x) x = F.leaky_relu(x) x = self.hidden_layer(x) x = F.leaky_relu(x) x = self.hidden_layer(x) x = F.leaky_relu(x) x = self.output_layer(x) if self.NN_add_sigmoid==True: x = F.sigmoid(x) return x class Model_ML(): def __init__(self,config,X_test): super(Model_ML, self).__init__() self.X_test=X_test self.seed=config.seed self.torch_seed=config.seed self.config=config self.add_dipole = config.add_dipole self.add_molecular_descriptors = config.add_molecular_descriptors self.add_eluent_matrix=config.add_eluent_matrix self.use_sigmoid=config.use_sigmoid self.use_model=config.use_model self.LGB_max_depth=config.LGB_max_depth self.LGB_num_leaves=config.LGB_num_leaves self.LGB_learning_rate=config.LGB_learning_rate self.LGB_n_estimators=config.LGB_n_estimators self.LGB_early_stopping_rounds=config.LGB_early_stopping_rounds self.XGB_n_estimators=config.XGB_n_estimators self.XGB_max_depth = config.XGB_max_depth self.XGB_learning_rate = config.XGB_learning_rate self.RF_n_estimators=config.RF_n_estimators self.RF_random_state=config.RF_random_state self.RF_n_jobs=config.RF_n_jobs self.NN_hidden_neuron=config.NN_hidden_neuron self.NN_optimizer=config.NN_optimizer self.NN_lr= config.NN_lr self.NN_model_save_location=config.NN_model_save_location self.NN_max_epoch=config.NN_max_epoch self.NN_add_PINN=config.NN_add_PINN self.NN_epi=config.NN_epi self.device=config.device self.plot_row_num=config.plot_row_num self.plot_col_num=config.plot_col_num self.plot_importance_num=config.plot_importance_num def load_model(self): model_LGB = lgb.LGBMRegressor(objective='regression', max_depth=self.LGB_max_depth, num_leaves=self.LGB_num_leaves, learning_rate=self.LGB_learning_rate, n_estimators=self.LGB_n_estimators) model_XGB = XGBRegressor(seed=self.seed, n_estimators=self.XGB_n_estimators, max_depth=self.XGB_max_depth, eval_metric='rmse', learning_rate=self.XGB_learning_rate, min_child_weight=1, subsample=1, colsample_bytree=1, colsample_bylevel=1, gamma=0) model_RF = RandomForestRegressor(n_estimators=self.RF_n_estimators, criterion='mse', random_state=self.RF_random_state, n_jobs=self.RF_n_jobs) Net = ANN(self.X_test.shape[1], self.NN_hidden_neuron, 1, config=self.config).to(self.device) #model_LGB = joblib.load('model_LGB.pkl') #wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_LGB.pkl') #wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_XGB.pkl') #wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_RF.pkl') #wget.download('https://huggingface.co/woshixuhao/Rf_prediction/resolve/main/model_ANN.pkl') model_LGB = joblib.load('model_LGB.pkl') model_XGB = joblib.load('model_XGB.pkl') model_RF = joblib.load('model_RF.pkl') Net.load_state_dict(torch.load('model_ANN.pkl',map_location=torch.device('cpu'))) return model_LGB,model_XGB,model_RF,Net def get_Rf(self): model_LGB, model_XGB, model_RF, model_ANN = Model_ML.load_model(self) X_test_ANN = Variable(torch.from_numpy(self.X_test.astype(np.float32)).to(self.device), requires_grad=True) y_pred_ANN = model_ANN(X_test_ANN).cpu().data.numpy() y_pred_ANN = y_pred_ANN.reshape(y_pred_ANN.shape[0], ) y_pred_XGB = model_XGB.predict(self.X_test) if self.use_sigmoid == True: y_pred_XGB = 1 / (1 + np.exp(-y_pred_XGB)) y_pred_LGB = model_LGB.predict(self.X_test) if self.use_sigmoid == True: y_pred_LGB = 1 / (1 + np.exp(-y_pred_LGB)) y_pred_RF = model_RF.predict(self.X_test) if self.use_sigmoid == True: y_pred_RF = 1 / (1 + np.exp(-y_pred_RF)) y_pred = (0.2 * y_pred_LGB + 0.2 * y_pred_XGB + 0.2 * y_pred_RF + 0.4 * y_pred_ANN) return y_pred def get_descriptor(smiles,ratio): compound_mol = Chem.MolFromSmiles(smiles) descriptor=[] descriptor.append(Descriptors.ExactMolWt(compound_mol)) descriptor.append(Chem.rdMolDescriptors.CalcTPSA(compound_mol)) descriptor.append(Descriptors.NumRotatableBonds(compound_mol)) # Number of rotable bonds descriptor.append(Descriptors.NumHDonors(compound_mol)) # Number of H bond donors descriptor.append(Descriptors.NumHAcceptors(compound_mol)) # Number of H bond acceptors descriptor.append(Descriptors.MolLogP(compound_mol)) # LogP descriptor=np.array(descriptor)*ratio return descriptor def get_eluent_descriptor(eluent): eluent=np.array(eluent) des = np.zeros([6,]) for i in range(eluent.shape[0]): if eluent[i] != 0: e_descriptors = get_descriptor(Eluent_smiles[i], eluent[i]) des+=e_descriptors return des def get_data_from_smile(smile, eluent_list): compound_mol = Chem.MolFromSmiles(smile) Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile)) fingerprint = np.array([x for x in Finger]) compound_finger = fingerprint compound_MolWt = Descriptors.ExactMolWt(compound_mol) compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol) compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors compound_LogP = Descriptors.MolLogP(compound_mol) # LogP X_test = np.zeros([1, 179]) X_test[0, 0:167] = compound_finger X_test[0, 167:173] = 0 X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP] eluent_array = get_eluent_descriptor(eluent_list) eluent_array = np.array(eluent_array) X_test[0, 167:173] = eluent_array return X_test def get_data_from_xlsx(file_name): file_open = pd.read_csv(file_name) smiles = file_open['SMILES'].values PEs = file_open['PE'].values EAs = file_open['EA'].values DCMs = file_open['DCM'].values MeOHs = file_open['MeOH'].values Et2Os = file_open['Et2O'].values X_test = np.zeros([len(smiles), 179]) for i in range(len(smiles)): smile=smiles[i] eluent_sum = PEs[i] + EAs[i] + DCMs[i] + MeOHs[i] + Et2Os[i] if eluent_sum != 0: eluent_list = [PEs[i] / eluent_sum, EAs[i] / eluent_sum, DCMs[i] / eluent_sum, MeOHs[i] / eluent_sum, Et2Os[i] / eluent_sum] else: eluent_list = [0, 0, 0, 0, 0] compound_mol = Chem.MolFromSmiles(smile) Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile)) fingerprint = np.array([x for x in Finger]) compound_finger = fingerprint compound_MolWt = Descriptors.ExactMolWt(compound_mol) compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol) compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors compound_LogP = Descriptors.MolLogP(compound_mol) # LogP X_test[i, 0:167] = compound_finger X_test[i, 167:173] = 0 X_test[i, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP] eluent_array = get_eluent_descriptor(eluent_list) eluent_array = np.array(eluent_array) X_test[i, 167:173] = eluent_array return X_test def predict_single(smile,PE,EA,DCM,MeOH,Et20): if PE==None: PE=0 if EA==None: EA=0 if DCM==None: DCM=0 if MeOH==None: MeOH=0 if Et20==None: Et20=0 config = parse_args() config.add_dipole = False eluent_sum=PE+EA+DCM+MeOH+Et20 if eluent_sum!=0: eluent_list=[PE/eluent_sum,EA/eluent_sum,DCM/eluent_sum,MeOH/eluent_sum,Et20/eluent_sum] else: eluent_list=[0,0,0,0,0] X_test=get_data_from_smile(smile,eluent_list) Model = Model_ML(config,X_test) Rf=Model.get_Rf() return Rf[0] def predict_xlsx(file): file_name=file.name config = parse_args() config.add_dipole = False X_test = get_data_from_xlsx(file_name) Model = Model_ML(config, X_test) Rf = Model.get_Rf() file_open = pd.read_csv(file_name) file_open['Rf']=Rf file_open.to_csv(file_name) return file_name def get_data_from_smile_compare(smile): x_PE = np.array([[0, 1, 0, 0, 0], [0.333333, 0.666667, 0, 0, 0], [0.5, 0.5, 0, 0, 0], [0.75, 0.25, 0, 0, 0], [0.833333, 0.166667, 0, 0, 0], [0.952381, 0.047619, 0, 0, 0], [0.980392, 0.019608, 0, 0, 0], [1, 0, 0, 0, 0]], dtype=np.float32) x_PE=np.flip(x_PE,axis=0) x_ME = np.array([[0, 0, 1, 0, 0], [0, 0, 0.990099, 0.009901, 0], [0, 0, 0.980392, 0.019608, 0], [0, 0, 0.967742, 0.032258, 0], [0, 0, 0.952381, 0.047619, 0], [0, 0, 0.909091, 0.090909, 0]], dtype=np.float32) x_Et = np.array([[1,0,0,0,0],[0.66667, 0, 0, 0, 0.33333], [0.5, 0, 0, 0, 0.5],[0.33333,0,0,0,0.66667], [0, 0, 0, 0, 1]]) compound_mol = Chem.MolFromSmiles(smile) Finger = MACCSkeys.GenMACCSKeys(Chem.MolFromSmiles(smile)) fingerprint = np.array([x for x in Finger]) compound_finger = fingerprint compound_MolWt = Descriptors.ExactMolWt(compound_mol) compound_TPSA = Chem.rdMolDescriptors.CalcTPSA(compound_mol) compound_nRotB = Descriptors.NumRotatableBonds(compound_mol) # Number of rotable bonds compound_HBD = Descriptors.NumHDonors(compound_mol) # Number of H bond donors compound_HBA = Descriptors.NumHAcceptors(compound_mol) # Number of H bond acceptors compound_LogP = Descriptors.MolLogP(compound_mol) # LogP X_test_PE=[] X_test_ME=[] X_test_Et=[] X_test = np.zeros([1, 179]) X_test[0, 0:167] = compound_finger X_test[0, 167:173] = 0 X_test[0, 173:179] = [compound_MolWt, compound_TPSA, compound_nRotB, compound_HBD, compound_HBA, compound_LogP] for x in x_PE: X_test[0, 167:173] =get_eluent_descriptor(x) X_test_PE.append(X_test.copy()) for x in x_ME: X_test[0, 167:173] = get_eluent_descriptor(x) X_test_ME.append(X_test.copy()) for x in x_Et: X_test[0, 167:173] = get_eluent_descriptor(x) X_test_Et.append(X_test.copy()) X_test_PE=np.squeeze(np.array(X_test_PE)) X_test_Et=np.squeeze(np.array(X_test_Et)) X_test_ME=np.squeeze(np.array(X_test_ME)) return X_test_PE,X_test_Et,X_test_ME def convert_fig_PIL(fig): canvas = FigureCanvasAgg(fig) canvas.draw() w, h = canvas.get_width_height() buf = np.fromstring(canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) buf = np.roll(buf, 3, axis=2) image = Image.frombytes("RGBA", (w, h), buf.tostring()) return image def predict_compare(smile_1,smile_2): config = parse_args() config.add_dipole = False X_test_PE_1,X_test_Et_1,X_test_ME_1=get_data_from_smile_compare(smile_1) X_test_PE_2,X_test_Et_2,X_test_ME_2=get_data_from_smile_compare(smile_2) Rf_all=[] for x_test in [X_test_PE_1,X_test_Et_1,X_test_ME_1,X_test_PE_2,X_test_Et_2,X_test_ME_2]: Model = Model_ML(config,x_test) Rf=Model.get_Rf() Rf_all.append(Rf) fig1=plot_Rf(Rf_all[0],Rf_all[3],'PE:EA') fig2 = plot_Rf(Rf_all[2], Rf_all[5], 'DCM:MeOH') fig3 = plot_Rf(Rf_all[1], Rf_all[4], 'PE:Et2O') fig1=convert_fig_PIL(fig1) fig2=convert_fig_PIL(fig2) fig3=convert_fig_PIL(fig3) return fig1,fig2,fig3 def plot_Rf(Rf_1,Rf_2,eluent): EA = np.array([0, 0.019608, 0.047619, 0.166667, 0.25, 0.5, 0.666667, 1]) ME = np.array([0, 0.009901, 0.019608, 0.032258, 0.047619, 0.090909]) Et = np.array([0, 0.33333, 0.5, 0.66667, 1]) font1 = {'family': 'Arial', 'weight': 'normal', 'size': 5} if eluent=='PE:EA': fig = plt.figure(1, figsize=(2, 2), dpi=300) plt.clf() ax = plt.subplot(1, 1, 1) plt.plot(np.arange(0,EA.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1) plt.plot(np.arange(0,EA.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1) plt.scatter(np.arange(0,EA.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5) plt.scatter(np.arange(0,EA.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5) plt.xlabel('PE:EA',font1) plt.ylabel('Rf',font1) plt.xticks(np.arange(0,EA.shape[0],1), ['1:0','50:1','20:1','5:1','3:1','1:1','1:2','0:1'],fontproperties='Arial', size=4) plt.yticks([0,0.2,0.4,0.6,0.8,1.0],[0,0.2,0.4,0.6,0.8,1.0],fontproperties='Arial', size=4) plt.legend(loc='lower right', prop=font1) if eluent == 'DCM:MeOH': fig = plt.figure(2, figsize=(2, 2), dpi=300) plt.clf() ax = plt.subplot(1, 1, 1) plt.plot(np.arange(0,ME.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1) plt.plot(np.arange(0,ME.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1) plt.scatter(np.arange(0,ME.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5) plt.scatter(np.arange(0,ME.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5) plt.xlabel('DCM:MeOH', font1) plt.ylabel('Rf', font1) plt.xticks(np.arange(0,ME.shape[0],1), ['1:0','100:1','50:1','30:1','20:1','10:1'], fontproperties='Arial', size=4) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4) plt.legend(loc='lower right', prop=font1) if eluent == 'PE:Et2O': fig = plt.figure(3, figsize=(2, 2), dpi=300) plt.clf() ax = plt.subplot(1, 1, 1) plt.plot(np.arange(0,Et.shape[0],1), Rf_1, c='#82B0D2', label='SMILE_1', zorder=1) plt.plot(np.arange(0,Et.shape[0],1), Rf_2, c='#8A83B4', label='SMILE_2', zorder=1) plt.scatter(np.arange(0,Et.shape[0],1), Rf_1, color='white', edgecolors='black', marker='^', s=10, zorder=1,linewidths=0.5) plt.scatter(np.arange(0,Et.shape[0],1), Rf_2, color='white', edgecolors='black', marker='*', s=10, zorder=2,linewidths=0.5) plt.xlabel('PE:Et2O', font1) plt.ylabel('Rf', font1) plt.xticks(np.arange(0,Et.shape[0],1), ['1:0','2:1','1:1','1:2','0:1'], fontproperties='Arial', size=4) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0], [0, 0.2, 0.4, 0.6, 0.8, 1.0], fontproperties='Arial', size=4) plt.legend(loc='lower right', prop=font1) plt.title(eluent,font1) plt.tight_layout() plt.ylim(-0.1, 1.1) return fig if __name__=='__main__': theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", ) model_card = f""" ## Description\n It is a app for predicting Rf values of a compound under given eluents in TLC.\n input: smiles of one compound, such as CC(OCC)=O, and the ratio of five solvents, example: 20 1 0 0 0 for PE:EA=20:1\n output: the predicted Rf value.\n\n ## Citation\n We would appreciate it if you use our software and give us credit in the acknowledgements section of your paper:\n we use RF prediction software in our synthesis work. [Citation 1, Citation 2]\n Citation1: H. Xu, J. Lin, Q. Liu, Y. Chen, J. Zhang, Y. Yang, M.C. Young, Y. Xu, D. Zhang, F. Mo High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques Chem (2022), 3202–3214, 10.1016/j.chempr.2022.08.008\n Citation2: https://huggingface.co/spaces/woshixuhao/Rf_prediction\n Business applications require authorization! ## Function\n Single predict: predict a compound under a given eluent system\n Batch predict: Upload a .csv file with multiple conditions to conduct batch prediction\n Rf compare: predict Rf values of two compounds under different eluents in TLC """ with gr.Blocks() as demo: gr.Markdown('''