""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import torch from omegaconf import OmegaConf from unimernet.common.registry import registry from unimernet.models.base_model import BaseModel from unimernet.processors.base_processor import BaseProcessor from unimernet.models.unimernet.unimernet import UniMERModel __all__ = [ "load_model", "BaseModel", "UniMERModel", ] def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None): """ Load supported models. To list all available models and types in registry: >>> from unimernet.models import model_zoo >>> print(model_zoo) Args: name (str): name of the model. model_type (str): type of the model. is_eval (bool): whether the model is in eval mode. Default: False. device (str): device to use. Default: "cpu". checkpoint (str): path or to checkpoint. Default: None. Note that expecting the checkpoint to have the same keys in state_dict as the model. Returns: model (torch.nn.Module): model. """ model = registry.get_model_class(name).from_pretrained(model_type=model_type) if checkpoint is not None: model.load_checkpoint(checkpoint) if is_eval: model.eval() if device == "cpu": model = model.float() return model.to(device) def load_preprocess(config): """ Load preprocessor configs and construct preprocessors. If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing. Args: config (dict): preprocessor configs. Returns: vis_processors (dict): preprocessors for visual inputs. txt_processors (dict): preprocessors for text inputs. Key is "train" or "eval" for processors used in training and evaluation respectively. """ def _build_proc_from_cfg(cfg): return ( registry.get_processor_class(cfg.name).from_config(cfg) if cfg is not None else BaseProcessor() ) vis_processors = dict() txt_processors = dict() vis_proc_cfg = config.get("vis_processor") txt_proc_cfg = config.get("text_processor") if vis_proc_cfg is not None: vis_train_cfg = vis_proc_cfg.get("train") vis_eval_cfg = vis_proc_cfg.get("eval") else: vis_train_cfg = None vis_eval_cfg = None vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg) vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg) if txt_proc_cfg is not None: txt_train_cfg = txt_proc_cfg.get("train") txt_eval_cfg = txt_proc_cfg.get("eval") else: txt_train_cfg = None txt_eval_cfg = None txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg) txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg) return vis_processors, txt_processors def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"): """ Load model and its related preprocessors. List all available models and types in registry: >>> from unimernet.models import model_zoo >>> print(model_zoo) Args: name (str): name of the model. model_type (str): type of the model. is_eval (bool): whether the model is in eval mode. Default: False. device (str): device to use. Default: "cpu". Returns: model (torch.nn.Module): model. vis_processors (dict): preprocessors for visual inputs. txt_processors (dict): preprocessors for text inputs. """ model_cls = registry.get_model_class(name) # load model model = model_cls.from_pretrained(model_type=model_type) if is_eval: model.eval() # load preprocess cfg = OmegaConf.load(model_cls.default_config_path(model_type)) if cfg is not None: preprocess_cfg = cfg.preprocess vis_processors, txt_processors = load_preprocess(preprocess_cfg) else: vis_processors, txt_processors = None, None logging.info( f"""No default preprocess for model {name} ({model_type}). This can happen if the model is not finetuned on downstream datasets, or it is not intended for direct use without finetuning. """ ) if device == "cpu" or device == torch.device("cpu"): model = model.float() return model.to(device), vis_processors, txt_processors class ModelZoo: """ A utility class to create string representation of available model architectures and types. >>> from unimernet.models import model_zoo >>> # list all available models >>> print(model_zoo) >>> # show total number of models >>> print(len(model_zoo)) """ def __init__(self) -> None: self.model_zoo = { k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys()) for k, v in registry.mapping["model_name_mapping"].items() } def __str__(self) -> str: return ( "=" * 50 + "\n" + f"{'Architectures':<30} {'Types'}\n" + "=" * 50 + "\n" + "\n".join( [ f"{name:<30} {', '.join(types)}" for name, types in self.model_zoo.items() ] ) ) def __iter__(self): return iter(self.model_zoo.items()) def __len__(self): return sum([len(v) for v in self.model_zoo.values()]) model_zoo = ModelZoo()