Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
+
|
7 |
+
# import os
|
8 |
+
# import random
|
9 |
+
# from gradio_client import Client
|
10 |
+
|
11 |
+
|
12 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
+
|
14 |
+
# Initialize Florence model
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
17 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
18 |
+
|
19 |
+
# api_key = os.getenv("HF_READ_TOKEN")
|
20 |
+
|
21 |
+
def generate_caption(image):
|
22 |
+
if not isinstance(image, Image.Image):
|
23 |
+
image = Image.fromarray(image)
|
24 |
+
|
25 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
26 |
+
generated_ids = florence_model.generate(
|
27 |
+
input_ids=inputs["input_ids"],
|
28 |
+
pixel_values=inputs["pixel_values"],
|
29 |
+
max_new_tokens=1024,
|
30 |
+
early_stopping=False,
|
31 |
+
do_sample=False,
|
32 |
+
num_beams=3,
|
33 |
+
)
|
34 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
35 |
+
parsed_answer = florence_processor.post_process_generation(
|
36 |
+
generated_text,
|
37 |
+
task="<MORE_DETAILED_CAPTION>",
|
38 |
+
image_size=(image.width, image.height)
|
39 |
+
)
|
40 |
+
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
|
41 |
+
print("\n\nGeneration completed!:"+ prompt)
|
42 |
+
return prompt
|
43 |
+
# yield prompt, None
|
44 |
+
# image_path = generate_image(prompt,random.randint(0, 4294967296))
|
45 |
+
# yield prompt, image_path
|
46 |
+
|
47 |
+
# def generate_image(prompt, seed=42, width=1024, height=1024):
|
48 |
+
# try:
|
49 |
+
# result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict(
|
50 |
+
# prompt=prompt,
|
51 |
+
# seed=seed,
|
52 |
+
# width=width,
|
53 |
+
# height=height,
|
54 |
+
# api_name="/generate_image"
|
55 |
+
# )
|
56 |
+
# # Extract the image path from the result tuple
|
57 |
+
# image_path = result[0]
|
58 |
+
# return image_path
|
59 |
+
# except Exception as e:
|
60 |
+
# raise Exception(f"Error generating image: {str(e)}")
|
61 |
+
|
62 |
+
io = gr.Interface(generate_caption,
|
63 |
+
inputs=[gr.Image(label="Input Image")],
|
64 |
+
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
|
65 |
+
# gr.Image(label="Output Image")
|
66 |
+
]
|
67 |
+
)
|
68 |
+
io.launch(debug=True)
|