Spaces:
Running
on
Zero
ZeroGPU (#4)
Browse files- Remove token (391cab335e42b9eed367a6c4bc44a8066f8acab9)
- isort (6b3f6f8e41f4c0f2841a49863088fdedea1a4670)
- Remove unused imports (befa34f550f6ac52d79943f017a9b32bffe0256d)
- Apply black (54d20954a30dc6d35884ca6c2bd33b6a682bb2f5)
- Apply isort (1925f490dbced552e4b2cc32c6804de6f8c13eec)
- format (875eadd579f1df01f644f16ed4af1d13ddeace01)
- Fix (32dc90696bd3ec6e4e77e75bb2a81c7fe3b52256)
- Update (dc16691919cee935b21b0bfc0bb9787bbb963178)
- Update (f740706b638b80b54bf3067f2aefeb725121a52f)
- Update (25f96d7c71cfc0c47c789d311e6966fb6a5b985f)
- Update (e03d871fc929f272230a103de1931de641f3eaf8)
- Fix (acd57c10e002ecd153757533c1475766fd09e061)
- gradio==5.5.0 (6877bee659d82ba2e6bb9f076fb8a3d1200f369a)
- Add progress bar (84c934299f248c1e90343e5b1110e24eaf1b26d5)
- Update (60b62e7cff7320dbf5ad39da1a77d917e2290ba7)
Co-authored-by: hysts <hysts@users.noreply.huggingface.co>
- README.md +1 -1
- app.py +392 -362
- requirements.txt +278 -13
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: gray
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
python_version: 3.8.9
|
9 |
app_file: app.py
|
10 |
pinned: false
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.5.0
|
8 |
python_version: 3.8.9
|
9 |
app_file: app.py
|
10 |
pinned: false
|
@@ -1,94 +1,76 @@
|
|
1 |
-
import spaces
|
2 |
import datetime
|
|
|
|
|
3 |
import uuid
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import cv2
|
7 |
-
from scipy.interpolate import interp1d, PchipInterpolator
|
8 |
-
from packaging import version
|
9 |
|
|
|
|
|
|
|
|
|
10 |
import torch
|
11 |
import torchvision
|
12 |
-
|
13 |
-
|
14 |
-
from
|
15 |
-
from diffusers.utils import load_image, export_to_video, export_to_gif
|
16 |
|
17 |
-
import os
|
18 |
-
import sys
|
19 |
sys.path.insert(0, os.getcwd())
|
|
|
|
|
20 |
from models_diffusers.controlnet_svd import ControlNetSVDModel
|
21 |
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
22 |
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline
|
23 |
-
from gradio_demo.utils_drag import *
|
24 |
|
25 |
-
import warnings
|
26 |
print("gr file", gr.__file__)
|
27 |
|
28 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
29 |
|
30 |
os.makedirs("checkpoints", exist_ok=True)
|
31 |
|
32 |
snapshot_download(
|
33 |
"wwen1997/framer_512x320",
|
34 |
local_dir="checkpoints/framer_512x320",
|
35 |
-
token=os.environ["TOKEN"],
|
36 |
)
|
37 |
|
38 |
snapshot_download(
|
39 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
40 |
local_dir="checkpoints/stable-video-diffusion-img2vid-xt",
|
41 |
-
token=os.environ["TOKEN"],
|
42 |
)
|
43 |
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
parser.add_argument("--min_guidance_scale", type=float, default=1.0)
|
50 |
-
parser.add_argument("--max_guidance_scale", type=float, default=3.0)
|
51 |
-
parser.add_argument("--middle_max_guidance", type=int, default=0, choices=[0, 1])
|
52 |
-
parser.add_argument("--with_control", type=int, default=1, choices=[0, 1])
|
53 |
-
|
54 |
-
parser.add_argument("--controlnet_cond_scale", type=float, default=1.0)
|
55 |
-
|
56 |
-
parser.add_argument(
|
57 |
-
"--dataset",
|
58 |
-
type=str,
|
59 |
-
default='videoswap',
|
60 |
-
)
|
61 |
-
|
62 |
-
parser.add_argument(
|
63 |
-
"--model", type=str,
|
64 |
-
default="checkpoints/framer_512x320",
|
65 |
-
help="Path to model.",
|
66 |
-
)
|
67 |
-
|
68 |
-
parser.add_argument("--output_dir", type=str, default="gradio_demo/outputs", help="Path to the output video.")
|
69 |
-
|
70 |
-
parser.add_argument("--seed", type=int, default=42, help="random seed.")
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
parser.add_argument("--num_frames", type=int, default=14)
|
75 |
-
parser.add_argument("--frame_interval", type=int, default=2)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
help=(
|
85 |
-
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
86 |
-
),
|
87 |
-
)
|
88 |
-
|
89 |
-
args = parser.parse_args()
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
def interpolate_trajectory(points, n_points):
|
@@ -113,27 +95,34 @@ def interpolate_trajectory(points, n_points):
|
|
113 |
|
114 |
def gen_gaussian_heatmap(imgSize=200):
|
115 |
circle_img = np.zeros((imgSize, imgSize), np.float32)
|
116 |
-
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1)
|
117 |
|
118 |
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
|
119 |
|
120 |
for i in range(imgSize):
|
121 |
for j in range(imgSize):
|
122 |
-
isotropicGrayscaleImage[i, j] =
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
|
126 |
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
|
127 |
-
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8)
|
128 |
|
129 |
return isotropicGrayscaleImage
|
130 |
|
131 |
|
132 |
def get_vis_image(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
137 |
|
138 |
# images = []
|
139 |
vis_images = []
|
@@ -141,13 +130,13 @@ def get_vis_image(
|
|
141 |
|
142 |
trajectory_list = []
|
143 |
radius_list = []
|
144 |
-
|
145 |
for index, point in enumerate(points):
|
146 |
trajectories = [[int(i[0]), int(i[1])] for i in point]
|
147 |
trajectory_list.append(trajectories)
|
148 |
|
149 |
radius = 20
|
150 |
-
radius_list.append(radius)
|
151 |
|
152 |
if len(trajectory_list) == 0:
|
153 |
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
|
@@ -157,33 +146,39 @@ def get_vis_image(
|
|
157 |
new_img = np.zeros(target_size, np.uint8)
|
158 |
vis_img = new_img.copy()
|
159 |
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
|
160 |
-
|
161 |
-
if idxx >=
|
162 |
break
|
163 |
|
164 |
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
|
165 |
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
|
166 |
-
|
167 |
center_coordinate = trajectory[idxx]
|
168 |
trajectory_ = trajectory[:idxx]
|
169 |
side = min(radius, 50)
|
170 |
-
|
171 |
-
y1 = max(center_coordinate[1] - side,0)
|
172 |
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
|
173 |
x1 = max(center_coordinate[0] - side, 0)
|
174 |
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
|
175 |
-
|
176 |
-
if x2-x1>3 and y2-y1>3:
|
177 |
-
need_map = cv2.resize(heatmap, (x2-x1, y2-y1))
|
178 |
new_img[y1:y2, x1:x2] = need_map.copy()
|
179 |
-
|
180 |
if cc >= 0:
|
181 |
-
vis_img[y1:y2,x1:x2] = need_map.copy()
|
182 |
if len(trajectory_) == 1:
|
183 |
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
|
184 |
else:
|
185 |
-
for itt in range(len(trajectory_)-1):
|
186 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
img = new_img
|
189 |
|
@@ -194,7 +189,7 @@ def get_vis_image(
|
|
194 |
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
|
195 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
196 |
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
|
197 |
-
|
198 |
# Convert the numpy array to a PIL image
|
199 |
# pil_img = Image.fromarray(img)
|
200 |
# images.append(pil_img)
|
@@ -215,7 +210,7 @@ def frames_to_video(frames_folder, output_video_path, fps=7):
|
|
215 |
video.append(frame)
|
216 |
|
217 |
video = torch.stack(video)
|
218 |
-
video = rearrange(video,
|
219 |
torchvision.io.write_video(output_video_path, video, fps=fps)
|
220 |
|
221 |
|
@@ -223,11 +218,12 @@ def save_gifs_side_by_side(
|
|
223 |
batch_output,
|
224 |
validation_control_images,
|
225 |
output_folder,
|
226 |
-
target_size=(512
|
227 |
duration=200,
|
228 |
point_tracks=None,
|
229 |
):
|
230 |
flattened_batch_output = batch_output
|
|
|
231 |
def create_gif(image_list, gif_path, duration=100):
|
232 |
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
|
233 |
pil_images = [img for img in pil_images if img is not None]
|
@@ -243,7 +239,7 @@ def save_gifs_side_by_side(
|
|
243 |
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
|
244 |
pil_image.save(tmp_frame_path)
|
245 |
tmp_frame_list.append(tmp_frame_path)
|
246 |
-
|
247 |
# also save as mp4
|
248 |
output_video_path = gif_path.replace(".gif", ".mp4")
|
249 |
frames_to_video(tmp_folder, output_video_path, fps=7)
|
@@ -286,25 +282,25 @@ def save_gifs_side_by_side(
|
|
286 |
if output_path.endswith(".mp4"):
|
287 |
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
|
288 |
video = torch.stack(video)
|
289 |
-
video = rearrange(video,
|
290 |
torchvision.io.write_video(output_path, video, fps=7)
|
291 |
print(f"Saved video to {output_path}")
|
292 |
else:
|
293 |
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
|
294 |
-
|
295 |
# Helper function to concatenate images horizontally
|
296 |
def get_concat_h(im1, im2, gap=10):
|
297 |
# # img first, heatmap second
|
298 |
# im1, im2 = im2, im1
|
299 |
|
300 |
-
dst = Image.new(
|
301 |
dst.paste(im1, (0, 0))
|
302 |
dst.paste(im2, (im1.width + gap, 0))
|
303 |
return dst
|
304 |
|
305 |
# Helper function to concatenate images vertically
|
306 |
def get_concat_v(im1, im2):
|
307 |
-
dst = Image.new(
|
308 |
dst.paste(im1, (0, 0))
|
309 |
dst.paste(im2, (0, im1.height))
|
310 |
return dst
|
@@ -325,7 +321,7 @@ def save_gifs_side_by_side(
|
|
325 |
|
326 |
|
327 |
# Define functions
|
328 |
-
def validate_and_convert_image(image, target_size=(512
|
329 |
if image is None:
|
330 |
print("Encountered a None image")
|
331 |
return None
|
@@ -346,192 +342,12 @@ def validate_and_convert_image(image, target_size=(512 , 512)):
|
|
346 |
else:
|
347 |
print("Image is not a PIL Image or a PyTorch tensor")
|
348 |
return None
|
349 |
-
|
350 |
-
return image
|
351 |
-
|
352 |
-
|
353 |
-
class Drag:
|
354 |
-
|
355 |
-
@spaces.GPU
|
356 |
-
def __init__(self, device, args, height, width, model_length, dtype=torch.float16, use_sift=False):
|
357 |
-
self.device = device
|
358 |
-
self.dtype = dtype
|
359 |
-
|
360 |
-
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
361 |
-
os.path.join(args.model, "unet"),
|
362 |
-
torch_dtype=torch.float16,
|
363 |
-
low_cpu_mem_usage=True,
|
364 |
-
custom_resume=True,
|
365 |
-
)
|
366 |
-
unet = unet.to(device, dtype)
|
367 |
-
|
368 |
-
controlnet = ControlNetSVDModel.from_pretrained(
|
369 |
-
os.path.join(args.model, "controlnet"),
|
370 |
-
)
|
371 |
-
controlnet = controlnet.to(device, dtype)
|
372 |
-
|
373 |
-
if is_xformers_available():
|
374 |
-
import xformers
|
375 |
-
xformers_version = version.parse(xformers.__version__)
|
376 |
-
unet.enable_xformers_memory_efficient_attention()
|
377 |
-
# controlnet.enable_xformers_memory_efficient_attention()
|
378 |
-
else:
|
379 |
-
raise ValueError(
|
380 |
-
"xformers is not available. Make sure it is installed correctly")
|
381 |
-
|
382 |
-
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
|
383 |
-
"checkpoints/stable-video-diffusion-img2vid-xt",
|
384 |
-
unet=unet,
|
385 |
-
controlnet=controlnet,
|
386 |
-
low_cpu_mem_usage=False,
|
387 |
-
torch_dtype=torch.float16, variant="fp16", local_files_only=True,
|
388 |
-
)
|
389 |
-
pipe.to(device)
|
390 |
-
|
391 |
-
self.pipeline = pipe
|
392 |
-
# self.pipeline.enable_model_cpu_offload()
|
393 |
-
|
394 |
-
self.height = height
|
395 |
-
self.width = width
|
396 |
-
self.args = args
|
397 |
-
self.model_length = model_length
|
398 |
-
self.use_sift = use_sift
|
399 |
-
|
400 |
-
@spaces.GPU
|
401 |
-
def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id):
|
402 |
-
original_width, original_height = 512, 320 # TODO
|
403 |
-
|
404 |
-
# load_image
|
405 |
-
image = Image.open(first_frame_path).convert('RGB')
|
406 |
-
width, height = image.size
|
407 |
-
image = image.resize((self.width, self.height))
|
408 |
-
|
409 |
-
image_end = Image.open(last_frame_path).convert('RGB')
|
410 |
-
image_end = image_end.resize((self.width, self.height))
|
411 |
-
|
412 |
-
input_all_points = tracking_points.constructor_args['value']
|
413 |
-
|
414 |
-
sift_track_update = False
|
415 |
-
anchor_points_flag = None
|
416 |
-
|
417 |
-
if (len(input_all_points) == 0) and self.use_sift:
|
418 |
-
sift_track_update = True
|
419 |
-
controlnet_cond_scale = 0.5
|
420 |
-
|
421 |
-
from models_diffusers.sift_match import sift_match
|
422 |
-
from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory
|
423 |
-
|
424 |
-
output_file_sift = os.path.join(args.output_dir, "sift.png")
|
425 |
-
|
426 |
-
# (f, topk, 2), f=2 (before interpolation)
|
427 |
-
pred_tracks = sift_match(
|
428 |
-
image,
|
429 |
-
image_end,
|
430 |
-
thr=0.5,
|
431 |
-
topk=5,
|
432 |
-
method="random",
|
433 |
-
output_path=output_file_sift,
|
434 |
-
)
|
435 |
-
|
436 |
-
if pred_tracks is not None:
|
437 |
-
# interpolate the tracks, following draganything gradio demo
|
438 |
-
pred_tracks = sift_interpolate_trajectory(pred_tracks, num_frames=self.model_length)
|
439 |
-
|
440 |
-
anchor_points_flag = torch.zeros((self.model_length, pred_tracks.shape[1])).to(pred_tracks.device)
|
441 |
-
anchor_points_flag[0] = 1
|
442 |
-
anchor_points_flag[-1] = 1
|
443 |
-
|
444 |
-
pred_tracks = pred_tracks.permute(1, 0, 2) # (num_points, num_frames, 2)
|
445 |
-
|
446 |
-
else:
|
447 |
-
|
448 |
-
resized_all_points = [
|
449 |
-
tuple([
|
450 |
-
tuple([int(e1[0] * self.width / original_width), int(e1[1] * self.height / original_height)])
|
451 |
-
for e1 in e])
|
452 |
-
for e in input_all_points
|
453 |
-
]
|
454 |
-
|
455 |
-
# a list of num_tracks tuples, each tuple contains a track with several points, represented as (x, y)
|
456 |
-
# in image w & h scale
|
457 |
-
|
458 |
-
for idx, splited_track in enumerate(resized_all_points):
|
459 |
-
if len(splited_track) == 0:
|
460 |
-
warnings.warn("running without point trajectory control")
|
461 |
-
continue
|
462 |
-
|
463 |
-
if len(splited_track) == 1: # stationary point
|
464 |
-
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
|
465 |
-
splited_track = tuple([splited_track[0], displacement_point])
|
466 |
-
# interpolate the track
|
467 |
-
splited_track = interpolate_trajectory(splited_track, self.model_length)
|
468 |
-
splited_track = splited_track[:self.model_length]
|
469 |
-
resized_all_points[idx] = splited_track
|
470 |
-
|
471 |
-
pred_tracks = torch.tensor(resized_all_points) # (num_points, num_frames, 2)
|
472 |
-
|
473 |
-
vis_images = get_vis_image(
|
474 |
-
target_size=(self.args.height, self.args.width),
|
475 |
-
points=pred_tracks,
|
476 |
-
num_frames=self.model_length,
|
477 |
-
)
|
478 |
-
|
479 |
-
if len(pred_tracks.shape) != 3:
|
480 |
-
print("pred_tracks.shape", pred_tracks.shape)
|
481 |
-
with_control = False
|
482 |
-
controlnet_cond_scale = 0.0
|
483 |
-
else:
|
484 |
-
with_control = True
|
485 |
-
pred_tracks = pred_tracks.permute(1, 0, 2).to(self.device, self.dtype) # (num_frames, num_points, 2)
|
486 |
-
|
487 |
-
point_embedding = None
|
488 |
-
video_frames = self.pipeline(
|
489 |
-
image,
|
490 |
-
image_end,
|
491 |
-
# trajectory control
|
492 |
-
with_control=with_control,
|
493 |
-
point_tracks=pred_tracks,
|
494 |
-
point_embedding=point_embedding,
|
495 |
-
with_id_feature=False,
|
496 |
-
controlnet_cond_scale=controlnet_cond_scale,
|
497 |
-
# others
|
498 |
-
num_frames=14,
|
499 |
-
width=width,
|
500 |
-
height=height,
|
501 |
-
# decode_chunk_size=8,
|
502 |
-
# generator=generator,
|
503 |
-
motion_bucket_id=motion_bucket_id,
|
504 |
-
fps=7,
|
505 |
-
num_inference_steps=30,
|
506 |
-
# track
|
507 |
-
sift_track_update=sift_track_update,
|
508 |
-
anchor_points_flag=anchor_points_flag,
|
509 |
-
).frames[0]
|
510 |
-
|
511 |
-
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
|
512 |
-
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
|
513 |
-
vis_images = [Image.fromarray(img) for img in vis_images]
|
514 |
-
|
515 |
-
# video_frames = [img for sublist in video_frames for img in sublist]
|
516 |
-
val_save_dir = os.path.join(args.output_dir, "vis_gif.gif")
|
517 |
-
save_gifs_side_by_side(
|
518 |
-
video_frames,
|
519 |
-
vis_images[:self.model_length],
|
520 |
-
val_save_dir,
|
521 |
-
target_size=(self.width, self.height),
|
522 |
-
duration=110,
|
523 |
-
point_tracks=pred_tracks,
|
524 |
-
)
|
525 |
-
|
526 |
-
return val_save_dir
|
527 |
|
|
|
528 |
|
529 |
-
def reset_states(first_frame_path, last_frame_path, tracking_points):
|
530 |
-
first_frame_path = gr.State()
|
531 |
-
last_frame_path = gr.State()
|
532 |
-
tracking_points = gr.State([])
|
533 |
|
534 |
-
|
|
|
535 |
|
536 |
|
537 |
def preprocess_image(image):
|
@@ -544,11 +360,11 @@ def preprocess_image(image):
|
|
544 |
# image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
|
545 |
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
546 |
|
547 |
-
first_frame_path = os.path.join(
|
548 |
-
|
549 |
image_pil.save(first_frame_path)
|
550 |
|
551 |
-
return first_frame_path, first_frame_path,
|
552 |
|
553 |
|
554 |
def preprocess_image_end(image_end):
|
@@ -561,37 +377,52 @@ def preprocess_image_end(image_end):
|
|
561 |
# image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
|
562 |
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)
|
563 |
|
564 |
-
last_frame_path = os.path.join(
|
565 |
|
566 |
image_end_pil.save(last_frame_path)
|
567 |
|
568 |
-
return last_frame_path, last_frame_path,
|
569 |
|
570 |
|
571 |
def add_drag(tracking_points):
|
572 |
-
tracking_points
|
|
|
573 |
return tracking_points
|
574 |
|
575 |
|
576 |
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
577 |
-
tracking_points
|
578 |
-
|
579 |
-
|
|
|
580 |
w, h = transparent_background.size
|
581 |
transparent_layer = np.zeros((h, w, 4))
|
582 |
|
583 |
-
for track in tracking_points
|
584 |
if len(track) > 1:
|
585 |
-
for i in range(len(track)-1):
|
586 |
start_point = track[i]
|
587 |
-
end_point = track[i+1]
|
588 |
vx = end_point[0] - start_point[0]
|
589 |
vy = end_point[1] - start_point[1]
|
590 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
591 |
-
if i == len(track)-2:
|
592 |
-
cv2.arrowedLine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
593 |
else:
|
594 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
else:
|
596 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
597 |
|
@@ -603,24 +434,40 @@ def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
|
603 |
|
604 |
|
605 |
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
606 |
-
tracking_points
|
607 |
-
|
608 |
-
|
|
|
609 |
w, h = transparent_background.size
|
610 |
transparent_layer = np.zeros((h, w, 4))
|
611 |
|
612 |
-
for track in tracking_points
|
|
|
|
|
613 |
if len(track) > 1:
|
614 |
-
for i in range(len(track)-1):
|
615 |
start_point = track[i]
|
616 |
-
end_point = track[i+1]
|
617 |
vx = end_point[0] - start_point[0]
|
618 |
vy = end_point[1] - start_point[1]
|
619 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
620 |
-
if i == len(track)-2:
|
621 |
-
cv2.arrowedLine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
622 |
else:
|
623 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
else:
|
625 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
626 |
|
@@ -631,34 +478,51 @@ def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
|
631 |
return tracking_points, trajectory_map, trajectory_map_end
|
632 |
|
633 |
|
634 |
-
def add_tracking_points(
|
|
|
|
|
635 |
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
636 |
-
tracking_points
|
|
|
|
|
637 |
|
638 |
-
transparent_background = Image.open(first_frame_path).convert(
|
639 |
-
transparent_background_end = Image.open(last_frame_path).convert(
|
640 |
|
641 |
w, h = transparent_background.size
|
642 |
transparent_layer = 0
|
643 |
-
for idx, track in enumerate(tracking_points
|
644 |
# mask = cv2.imread(
|
645 |
-
# os.path.join(
|
646 |
# )
|
647 |
mask = np.zeros((320, 512, 3))
|
648 |
-
color = color_list[idx+1]
|
649 |
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
650 |
|
651 |
if len(track) > 1:
|
652 |
-
for i in range(len(track)-1):
|
653 |
start_point = track[i]
|
654 |
-
end_point = track[i+1]
|
655 |
vx = end_point[0] - start_point[0]
|
656 |
vy = end_point[1] - start_point[1]
|
657 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
658 |
-
if i == len(track)-2:
|
659 |
-
cv2.arrowedLine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
else:
|
661 |
-
cv2.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
else:
|
663 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
664 |
|
@@ -674,26 +538,162 @@ def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt:
|
|
674 |
return tracking_points, trajectory_map, trajectory_map_end
|
675 |
|
676 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
if __name__ == "__main__":
|
678 |
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
color_list = []
|
683 |
for i in range(20):
|
684 |
-
color = np.concatenate([np.random.random(4)*255], axis=0)
|
685 |
color_list.append(color)
|
686 |
|
687 |
with gr.Blocks() as demo:
|
688 |
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")
|
689 |
-
|
690 |
-
gr.Markdown(
|
|
|
691 |
Github Repo can be found at https://github.com/aim-uofa/Framer<br>
|
692 |
-
The template is inspired by DragAnything."""
|
693 |
-
|
|
|
694 |
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)
|
695 |
-
|
696 |
-
gr.Markdown(
|
|
|
697 |
1. Upload images<br>
|
698 |
  1.1 Upload the start image via the "Upload Start Image" button.<br>
|
699 |
  1.2. Upload the end image via the "Upload End Image" button.<br>
|
@@ -702,14 +702,13 @@ if __name__ == "__main__":
|
|
702 |
  2.2. You can click several points on either start or end image to forms a path.<br>
|
703 |
  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
|
704 |
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
|
705 |
-
3. Interpolate the images (according the path) with a click on "Run" button. <br>"""
|
706 |
-
|
707 |
-
|
708 |
-
Framer = Drag("cuda", args, 320, 512, 14)
|
709 |
first_frame_path = gr.State()
|
710 |
last_frame_path = gr.State()
|
711 |
tracking_points = gr.State([])
|
712 |
-
|
713 |
with gr.Row():
|
714 |
with gr.Column(scale=1):
|
715 |
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
@@ -720,7 +719,7 @@ if __name__ == "__main__":
|
|
720 |
run_button = gr.Button(value="Run")
|
721 |
delete_last_drag_button = gr.Button(value="Delete last drag")
|
722 |
delete_last_step_button = gr.Button(value="Delete last step")
|
723 |
-
|
724 |
with gr.Column(scale=7):
|
725 |
with gr.Row():
|
726 |
with gr.Column(scale=6):
|
@@ -731,7 +730,7 @@ if __name__ == "__main__":
|
|
731 |
width=512,
|
732 |
sources=[],
|
733 |
)
|
734 |
-
|
735 |
with gr.Column(scale=6):
|
736 |
input_image_end = gr.Image(
|
737 |
label="end frame",
|
@@ -740,36 +739,36 @@ if __name__ == "__main__":
|
|
740 |
width=512,
|
741 |
sources=[],
|
742 |
)
|
743 |
-
|
744 |
with gr.Row():
|
745 |
with gr.Column(scale=1):
|
746 |
-
|
747 |
controlnet_cond_scale = gr.Slider(
|
748 |
-
label=
|
749 |
-
minimum=0.0,
|
750 |
-
maximum=10,
|
751 |
-
step=0.1,
|
752 |
value=1.0,
|
753 |
)
|
754 |
-
|
755 |
motion_bucket_id = gr.Slider(
|
756 |
-
label=
|
757 |
-
minimum=1,
|
758 |
-
maximum=180,
|
759 |
-
step=1,
|
760 |
value=100,
|
761 |
)
|
762 |
-
|
763 |
with gr.Column(scale=5):
|
764 |
output_video = gr.Image(
|
765 |
label="Output Video",
|
766 |
height=320,
|
767 |
width=1152,
|
768 |
)
|
769 |
-
|
770 |
-
|
771 |
with gr.Row():
|
772 |
-
gr.Markdown(
|
|
|
773 |
## Citation
|
774 |
```bibtex
|
775 |
@article{wang2024framer,
|
@@ -779,24 +778,55 @@ if __name__ == "__main__":
|
|
779 |
year={2024}
|
780 |
}
|
781 |
```
|
782 |
-
"""
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
demo.launch()
|
|
|
|
|
1 |
import datetime
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
import uuid
|
5 |
+
import warnings
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
import cv2
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import spaces
|
11 |
import torch
|
12 |
import torchvision
|
13 |
+
from huggingface_hub import snapshot_download
|
14 |
+
from PIL import Image
|
15 |
+
from scipy.interpolate import PchipInterpolator
|
|
|
16 |
|
|
|
|
|
17 |
sys.path.insert(0, os.getcwd())
|
18 |
+
|
19 |
+
from gradio_demo.utils_drag import *
|
20 |
from models_diffusers.controlnet_svd import ControlNetSVDModel
|
21 |
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
22 |
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline
|
|
|
23 |
|
|
|
24 |
print("gr file", gr.__file__)
|
25 |
|
|
|
26 |
|
27 |
os.makedirs("checkpoints", exist_ok=True)
|
28 |
|
29 |
snapshot_download(
|
30 |
"wwen1997/framer_512x320",
|
31 |
local_dir="checkpoints/framer_512x320",
|
|
|
32 |
)
|
33 |
|
34 |
snapshot_download(
|
35 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
36 |
local_dir="checkpoints/stable-video-diffusion-img2vid-xt",
|
|
|
37 |
)
|
38 |
|
39 |
|
40 |
+
model_id = "checkpoints/framer_512x320"
|
41 |
+
device = "cuda"
|
42 |
+
dtype = torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
OUTPUT_DIR = "gradio_demo/outputs"
|
45 |
+
HEIGHT = 320
|
46 |
+
WIDTH = 512
|
47 |
+
MODEL_LENGTH = 14
|
48 |
+
USE_SIFT = False
|
49 |
|
|
|
|
|
50 |
|
51 |
+
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
52 |
+
os.path.join(model_id, "unet"),
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
low_cpu_mem_usage=True,
|
55 |
+
custom_resume=True,
|
56 |
+
)
|
57 |
+
unet = unet.to(device, dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
controlnet = ControlNetSVDModel.from_pretrained(
|
60 |
+
os.path.join(model_id, "controlnet"),
|
61 |
+
)
|
62 |
+
controlnet = controlnet.to(device, dtype)
|
63 |
+
|
64 |
+
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained(
|
65 |
+
"checkpoints/stable-video-diffusion-img2vid-xt",
|
66 |
+
unet=unet,
|
67 |
+
controlnet=controlnet,
|
68 |
+
low_cpu_mem_usage=False,
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
variant="fp16",
|
71 |
+
local_files_only=True,
|
72 |
+
)
|
73 |
+
pipe.to(device)
|
74 |
|
75 |
|
76 |
def interpolate_trajectory(points, n_points):
|
|
|
95 |
|
96 |
def gen_gaussian_heatmap(imgSize=200):
|
97 |
circle_img = np.zeros((imgSize, imgSize), np.float32)
|
98 |
+
circle_mask = cv2.circle(circle_img, (imgSize // 2, imgSize // 2), imgSize // 2, 1, -1)
|
99 |
|
100 |
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32)
|
101 |
|
102 |
for i in range(imgSize):
|
103 |
for j in range(imgSize):
|
104 |
+
isotropicGrayscaleImage[i, j] = (
|
105 |
+
1
|
106 |
+
/ 2
|
107 |
+
/ np.pi
|
108 |
+
/ (40**2)
|
109 |
+
* np.exp(-1 / 2 * ((i - imgSize / 2) ** 2 / (40**2) + (j - imgSize / 2) ** 2 / (40**2)))
|
110 |
+
)
|
111 |
|
112 |
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask
|
113 |
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32)
|
114 |
+
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage) * 255).astype(np.uint8)
|
115 |
|
116 |
return isotropicGrayscaleImage
|
117 |
|
118 |
|
119 |
def get_vis_image(
|
120 |
+
target_size=(512, 512),
|
121 |
+
points=None,
|
122 |
+
side=20,
|
123 |
+
num_frames=14,
|
124 |
+
# original_size=(512 , 512), args="", first_frame=None, is_mask = False, model_id=None,
|
125 |
+
):
|
126 |
|
127 |
# images = []
|
128 |
vis_images = []
|
|
|
130 |
|
131 |
trajectory_list = []
|
132 |
radius_list = []
|
133 |
+
|
134 |
for index, point in enumerate(points):
|
135 |
trajectories = [[int(i[0]), int(i[1])] for i in point]
|
136 |
trajectory_list.append(trajectories)
|
137 |
|
138 |
radius = 20
|
139 |
+
radius_list.append(radius)
|
140 |
|
141 |
if len(trajectory_list) == 0:
|
142 |
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)]
|
|
|
146 |
new_img = np.zeros(target_size, np.uint8)
|
147 |
vis_img = new_img.copy()
|
148 |
# ids_embedding = torch.zeros((target_size[0], target_size[1], 320))
|
149 |
+
|
150 |
+
if idxx >= num_frames:
|
151 |
break
|
152 |
|
153 |
# for cc, (mask, trajectory, radius) in enumerate(zip(mask_list, trajectory_list, radius_list)):
|
154 |
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)):
|
155 |
+
|
156 |
center_coordinate = trajectory[idxx]
|
157 |
trajectory_ = trajectory[:idxx]
|
158 |
side = min(radius, 50)
|
159 |
+
|
160 |
+
y1 = max(center_coordinate[1] - side, 0)
|
161 |
y2 = min(center_coordinate[1] + side, target_size[0] - 1)
|
162 |
x1 = max(center_coordinate[0] - side, 0)
|
163 |
x2 = min(center_coordinate[0] + side, target_size[1] - 1)
|
164 |
+
|
165 |
+
if x2 - x1 > 3 and y2 - y1 > 3:
|
166 |
+
need_map = cv2.resize(heatmap, (x2 - x1, y2 - y1))
|
167 |
new_img[y1:y2, x1:x2] = need_map.copy()
|
168 |
+
|
169 |
if cc >= 0:
|
170 |
+
vis_img[y1:y2, x1:x2] = need_map.copy()
|
171 |
if len(trajectory_) == 1:
|
172 |
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255
|
173 |
else:
|
174 |
+
for itt in range(len(trajectory_) - 1):
|
175 |
+
cv2.line(
|
176 |
+
vis_img,
|
177 |
+
(trajectory_[itt][0], trajectory_[itt][1]),
|
178 |
+
(trajectory_[itt + 1][0], trajectory_[itt + 1][1]),
|
179 |
+
(255, 255, 255),
|
180 |
+
3,
|
181 |
+
)
|
182 |
|
183 |
img = new_img
|
184 |
|
|
|
189 |
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
|
190 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
191 |
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
|
192 |
+
|
193 |
# Convert the numpy array to a PIL image
|
194 |
# pil_img = Image.fromarray(img)
|
195 |
# images.append(pil_img)
|
|
|
210 |
video.append(frame)
|
211 |
|
212 |
video = torch.stack(video)
|
213 |
+
video = rearrange(video, "T C H W -> T H W C")
|
214 |
torchvision.io.write_video(output_video_path, video, fps=fps)
|
215 |
|
216 |
|
|
|
218 |
batch_output,
|
219 |
validation_control_images,
|
220 |
output_folder,
|
221 |
+
target_size=(512, 512),
|
222 |
duration=200,
|
223 |
point_tracks=None,
|
224 |
):
|
225 |
flattened_batch_output = batch_output
|
226 |
+
|
227 |
def create_gif(image_list, gif_path, duration=100):
|
228 |
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list]
|
229 |
pil_images = [img for img in pil_images if img is not None]
|
|
|
239 |
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png")
|
240 |
pil_image.save(tmp_frame_path)
|
241 |
tmp_frame_list.append(tmp_frame_path)
|
242 |
+
|
243 |
# also save as mp4
|
244 |
output_video_path = gif_path.replace(".gif", ".mp4")
|
245 |
frames_to_video(tmp_folder, output_video_path, fps=7)
|
|
|
282 |
if output_path.endswith(".mp4"):
|
283 |
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames]
|
284 |
video = torch.stack(video)
|
285 |
+
video = rearrange(video, "T C H W -> T H W C")
|
286 |
torchvision.io.write_video(output_path, video, fps=7)
|
287 |
print(f"Saved video to {output_path}")
|
288 |
else:
|
289 |
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration)
|
290 |
+
|
291 |
# Helper function to concatenate images horizontally
|
292 |
def get_concat_h(im1, im2, gap=10):
|
293 |
# # img first, heatmap second
|
294 |
# im1, im2 = im2, im1
|
295 |
|
296 |
+
dst = Image.new("RGB", (im1.width + im2.width + gap, max(im1.height, im2.height)), (255, 255, 255))
|
297 |
dst.paste(im1, (0, 0))
|
298 |
dst.paste(im2, (im1.width + gap, 0))
|
299 |
return dst
|
300 |
|
301 |
# Helper function to concatenate images vertically
|
302 |
def get_concat_v(im1, im2):
|
303 |
+
dst = Image.new("RGB", (max(im1.width, im2.width), im1.height + im2.height))
|
304 |
dst.paste(im1, (0, 0))
|
305 |
dst.paste(im2, (0, im1.height))
|
306 |
return dst
|
|
|
321 |
|
322 |
|
323 |
# Define functions
|
324 |
+
def validate_and_convert_image(image, target_size=(512, 512)):
|
325 |
if image is None:
|
326 |
print("Encountered a None image")
|
327 |
return None
|
|
|
342 |
else:
|
343 |
print("Image is not a PIL Image or a PyTorch tensor")
|
344 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
+
return image
|
347 |
|
|
|
|
|
|
|
|
|
348 |
|
349 |
+
def reset_states():
|
350 |
+
return None, None, None, None, None, []
|
351 |
|
352 |
|
353 |
def preprocess_image(image):
|
|
|
360 |
# image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
|
361 |
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
362 |
|
363 |
+
first_frame_path = os.path.join(OUTPUT_DIR, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
364 |
+
|
365 |
image_pil.save(first_frame_path)
|
366 |
|
367 |
+
return first_frame_path, first_frame_path, []
|
368 |
|
369 |
|
370 |
def preprocess_image_end(image_end):
|
|
|
377 |
# image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
|
378 |
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)
|
379 |
|
380 |
+
last_frame_path = os.path.join(OUTPUT_DIR, f"last_frame_{str(uuid.uuid4())[:4]}.png")
|
381 |
|
382 |
image_end_pil.save(last_frame_path)
|
383 |
|
384 |
+
return last_frame_path, last_frame_path, []
|
385 |
|
386 |
|
387 |
def add_drag(tracking_points):
|
388 |
+
if not tracking_points or tracking_points[-1]:
|
389 |
+
tracking_points.append([])
|
390 |
return tracking_points
|
391 |
|
392 |
|
393 |
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
394 |
+
if tracking_points:
|
395 |
+
tracking_points.pop()
|
396 |
+
transparent_background = Image.open(first_frame_path).convert("RGBA")
|
397 |
+
transparent_background_end = Image.open(last_frame_path).convert("RGBA")
|
398 |
w, h = transparent_background.size
|
399 |
transparent_layer = np.zeros((h, w, 4))
|
400 |
|
401 |
+
for track in tracking_points:
|
402 |
if len(track) > 1:
|
403 |
+
for i in range(len(track) - 1):
|
404 |
start_point = track[i]
|
405 |
+
end_point = track[i + 1]
|
406 |
vx = end_point[0] - start_point[0]
|
407 |
vy = end_point[1] - start_point[1]
|
408 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
409 |
+
if i == len(track) - 2:
|
410 |
+
cv2.arrowedLine(
|
411 |
+
transparent_layer,
|
412 |
+
tuple(start_point),
|
413 |
+
tuple(end_point),
|
414 |
+
(255, 0, 0, 255),
|
415 |
+
2,
|
416 |
+
tipLength=8 / arrow_length,
|
417 |
+
)
|
418 |
else:
|
419 |
+
cv2.line(
|
420 |
+
transparent_layer,
|
421 |
+
tuple(start_point),
|
422 |
+
tuple(end_point),
|
423 |
+
(255, 0, 0, 255),
|
424 |
+
2,
|
425 |
+
)
|
426 |
else:
|
427 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
428 |
|
|
|
434 |
|
435 |
|
436 |
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
437 |
+
if tracking_points and tracking_points[-1]:
|
438 |
+
tracking_points[-1].pop()
|
439 |
+
transparent_background = Image.open(first_frame_path).convert("RGBA")
|
440 |
+
transparent_background_end = Image.open(last_frame_path).convert("RGBA")
|
441 |
w, h = transparent_background.size
|
442 |
transparent_layer = np.zeros((h, w, 4))
|
443 |
|
444 |
+
for track in tracking_points:
|
445 |
+
if not track:
|
446 |
+
continue
|
447 |
if len(track) > 1:
|
448 |
+
for i in range(len(track) - 1):
|
449 |
start_point = track[i]
|
450 |
+
end_point = track[i + 1]
|
451 |
vx = end_point[0] - start_point[0]
|
452 |
vy = end_point[1] - start_point[1]
|
453 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
454 |
+
if i == len(track) - 2:
|
455 |
+
cv2.arrowedLine(
|
456 |
+
transparent_layer,
|
457 |
+
tuple(start_point),
|
458 |
+
tuple(end_point),
|
459 |
+
(255, 0, 0, 255),
|
460 |
+
2,
|
461 |
+
tipLength=8 / arrow_length,
|
462 |
+
)
|
463 |
else:
|
464 |
+
cv2.line(
|
465 |
+
transparent_layer,
|
466 |
+
tuple(start_point),
|
467 |
+
tuple(end_point),
|
468 |
+
(255, 0, 0, 255),
|
469 |
+
2,
|
470 |
+
)
|
471 |
else:
|
472 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
473 |
|
|
|
478 |
return tracking_points, trajectory_map, trajectory_map_end
|
479 |
|
480 |
|
481 |
+
def add_tracking_points(
|
482 |
+
tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData
|
483 |
+
): # SelectData is a subclass of EventData
|
484 |
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
485 |
+
if not tracking_points:
|
486 |
+
tracking_points = [[]]
|
487 |
+
tracking_points[-1].append(evt.index)
|
488 |
|
489 |
+
transparent_background = Image.open(first_frame_path).convert("RGBA")
|
490 |
+
transparent_background_end = Image.open(last_frame_path).convert("RGBA")
|
491 |
|
492 |
w, h = transparent_background.size
|
493 |
transparent_layer = 0
|
494 |
+
for idx, track in enumerate(tracking_points):
|
495 |
# mask = cv2.imread(
|
496 |
+
# os.path.join(OUTPUT_DIR, f"mask_{idx+1}.jpg")
|
497 |
# )
|
498 |
mask = np.zeros((320, 512, 3))
|
499 |
+
color = color_list[idx + 1]
|
500 |
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
501 |
|
502 |
if len(track) > 1:
|
503 |
+
for i in range(len(track) - 1):
|
504 |
start_point = track[i]
|
505 |
+
end_point = track[i + 1]
|
506 |
vx = end_point[0] - start_point[0]
|
507 |
vy = end_point[1] - start_point[1]
|
508 |
arrow_length = np.sqrt(vx**2 + vy**2)
|
509 |
+
if i == len(track) - 2:
|
510 |
+
cv2.arrowedLine(
|
511 |
+
transparent_layer,
|
512 |
+
tuple(start_point),
|
513 |
+
tuple(end_point),
|
514 |
+
(255, 0, 0, 255),
|
515 |
+
2,
|
516 |
+
tipLength=8 / arrow_length,
|
517 |
+
)
|
518 |
else:
|
519 |
+
cv2.line(
|
520 |
+
transparent_layer,
|
521 |
+
tuple(start_point),
|
522 |
+
tuple(end_point),
|
523 |
+
(255, 0, 0, 255),
|
524 |
+
2,
|
525 |
+
)
|
526 |
else:
|
527 |
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
528 |
|
|
|
538 |
return tracking_points, trajectory_map, trajectory_map_end
|
539 |
|
540 |
|
541 |
+
@spaces.GPU
|
542 |
+
def run(
|
543 |
+
first_frame_path,
|
544 |
+
last_frame_path,
|
545 |
+
tracking_points,
|
546 |
+
controlnet_cond_scale,
|
547 |
+
motion_bucket_id,
|
548 |
+
progress=gr.Progress(track_tqdm=True),
|
549 |
+
):
|
550 |
+
original_width, original_height = 512, 320 # TODO
|
551 |
+
|
552 |
+
# load_image
|
553 |
+
image = Image.open(first_frame_path).convert("RGB")
|
554 |
+
width, height = image.size
|
555 |
+
image = image.resize((WIDTH, HEIGHT))
|
556 |
+
|
557 |
+
image_end = Image.open(last_frame_path).convert("RGB")
|
558 |
+
image_end = image_end.resize((WIDTH, HEIGHT))
|
559 |
+
|
560 |
+
input_all_points = tracking_points
|
561 |
+
|
562 |
+
sift_track_update = False
|
563 |
+
anchor_points_flag = None
|
564 |
+
|
565 |
+
if (len(input_all_points) == 0) and USE_SIFT:
|
566 |
+
sift_track_update = True
|
567 |
+
controlnet_cond_scale = 0.5
|
568 |
+
|
569 |
+
from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory
|
570 |
+
from models_diffusers.sift_match import sift_match
|
571 |
+
|
572 |
+
output_file_sift = os.path.join(OUTPUT_DIR, "sift.png")
|
573 |
+
|
574 |
+
# (f, topk, 2), f=2 (before interpolation)
|
575 |
+
pred_tracks = sift_match(
|
576 |
+
image,
|
577 |
+
image_end,
|
578 |
+
thr=0.5,
|
579 |
+
topk=5,
|
580 |
+
method="random",
|
581 |
+
output_path=output_file_sift,
|
582 |
+
)
|
583 |
+
|
584 |
+
if pred_tracks is not None:
|
585 |
+
# interpolate the tracks, following draganything gradio demo
|
586 |
+
pred_tracks = sift_interpolate_trajectory(pred_tracks, num_frames=MODEL_LENGTH)
|
587 |
+
|
588 |
+
anchor_points_flag = torch.zeros((MODEL_LENGTH, pred_tracks.shape[1])).to(pred_tracks.device)
|
589 |
+
anchor_points_flag[0] = 1
|
590 |
+
anchor_points_flag[-1] = 1
|
591 |
+
|
592 |
+
pred_tracks = pred_tracks.permute(1, 0, 2) # (num_points, num_frames, 2)
|
593 |
+
|
594 |
+
else:
|
595 |
+
|
596 |
+
resized_all_points = [
|
597 |
+
tuple([tuple([int(e1[0] * WIDTH / original_width), int(e1[1] * HEIGHT / original_height)]) for e1 in e])
|
598 |
+
for e in input_all_points
|
599 |
+
]
|
600 |
+
|
601 |
+
# a list of num_tracks tuples, each tuple contains a track with several points, represented as (x, y)
|
602 |
+
# in image w & h scale
|
603 |
+
|
604 |
+
for idx, splited_track in enumerate(resized_all_points):
|
605 |
+
if len(splited_track) == 0:
|
606 |
+
warnings.warn("running without point trajectory control")
|
607 |
+
continue
|
608 |
+
|
609 |
+
if len(splited_track) == 1: # stationary point
|
610 |
+
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
|
611 |
+
splited_track = tuple([splited_track[0], displacement_point])
|
612 |
+
# interpolate the track
|
613 |
+
splited_track = interpolate_trajectory(splited_track, MODEL_LENGTH)
|
614 |
+
splited_track = splited_track[:MODEL_LENGTH]
|
615 |
+
resized_all_points[idx] = splited_track
|
616 |
+
|
617 |
+
pred_tracks = torch.tensor(resized_all_points) # (num_points, num_frames, 2)
|
618 |
+
|
619 |
+
vis_images = get_vis_image(
|
620 |
+
target_size=(HEIGHT, WIDTH),
|
621 |
+
points=pred_tracks,
|
622 |
+
num_frames=MODEL_LENGTH,
|
623 |
+
)
|
624 |
+
|
625 |
+
if len(pred_tracks.shape) != 3:
|
626 |
+
print("pred_tracks.shape", pred_tracks.shape)
|
627 |
+
with_control = False
|
628 |
+
controlnet_cond_scale = 0.0
|
629 |
+
else:
|
630 |
+
with_control = True
|
631 |
+
pred_tracks = pred_tracks.permute(1, 0, 2).to(device, dtype) # (num_frames, num_points, 2)
|
632 |
+
|
633 |
+
point_embedding = None
|
634 |
+
video_frames = pipe(
|
635 |
+
image,
|
636 |
+
image_end,
|
637 |
+
# trajectory control
|
638 |
+
with_control=with_control,
|
639 |
+
point_tracks=pred_tracks,
|
640 |
+
point_embedding=point_embedding,
|
641 |
+
with_id_feature=False,
|
642 |
+
controlnet_cond_scale=controlnet_cond_scale,
|
643 |
+
# others
|
644 |
+
num_frames=14,
|
645 |
+
width=width,
|
646 |
+
height=height,
|
647 |
+
# decode_chunk_size=8,
|
648 |
+
# generator=generator,
|
649 |
+
motion_bucket_id=motion_bucket_id,
|
650 |
+
fps=7,
|
651 |
+
num_inference_steps=30,
|
652 |
+
# track
|
653 |
+
sift_track_update=sift_track_update,
|
654 |
+
anchor_points_flag=anchor_points_flag,
|
655 |
+
).frames[0]
|
656 |
+
|
657 |
+
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images]
|
658 |
+
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images]
|
659 |
+
vis_images = [Image.fromarray(img) for img in vis_images]
|
660 |
+
|
661 |
+
# video_frames = [img for sublist in video_frames for img in sublist]
|
662 |
+
val_save_dir = os.path.join(OUTPUT_DIR, "vis_gif.gif")
|
663 |
+
save_gifs_side_by_side(
|
664 |
+
video_frames,
|
665 |
+
vis_images[:MODEL_LENGTH],
|
666 |
+
val_save_dir,
|
667 |
+
target_size=(WIDTH, HEIGHT),
|
668 |
+
duration=110,
|
669 |
+
point_tracks=pred_tracks,
|
670 |
+
)
|
671 |
+
|
672 |
+
return val_save_dir
|
673 |
+
|
674 |
+
|
675 |
if __name__ == "__main__":
|
676 |
|
677 |
+
ensure_dirname(OUTPUT_DIR)
|
678 |
+
|
|
|
679 |
color_list = []
|
680 |
for i in range(20):
|
681 |
+
color = np.concatenate([np.random.random(4) * 255], axis=0)
|
682 |
color_list.append(color)
|
683 |
|
684 |
with gr.Blocks() as demo:
|
685 |
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""")
|
686 |
+
|
687 |
+
gr.Markdown(
|
688 |
+
"""Gradio Demo for <a href='https://arxiv.org/abs/2410.18978'><b>Framer: Interactive Frame Interpolation</b></a>.<br>
|
689 |
Github Repo can be found at https://github.com/aim-uofa/Framer<br>
|
690 |
+
The template is inspired by DragAnything."""
|
691 |
+
)
|
692 |
+
|
693 |
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768)
|
694 |
+
|
695 |
+
gr.Markdown(
|
696 |
+
"""## Usage: <br>
|
697 |
1. Upload images<br>
|
698 |
  1.1 Upload the start image via the "Upload Start Image" button.<br>
|
699 |
  1.2. Upload the end image via the "Upload End Image" button.<br>
|
|
|
702 |
  2.2. You can click several points on either start or end image to forms a path.<br>
|
703 |
  2.3. Click "Delete last drag" to delete the whole lastest path.<br>
|
704 |
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
|
705 |
+
3. Interpolate the images (according the path) with a click on "Run" button. <br>"""
|
706 |
+
)
|
707 |
+
|
|
|
708 |
first_frame_path = gr.State()
|
709 |
last_frame_path = gr.State()
|
710 |
tracking_points = gr.State([])
|
711 |
+
|
712 |
with gr.Row():
|
713 |
with gr.Column(scale=1):
|
714 |
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
|
|
719 |
run_button = gr.Button(value="Run")
|
720 |
delete_last_drag_button = gr.Button(value="Delete last drag")
|
721 |
delete_last_step_button = gr.Button(value="Delete last step")
|
722 |
+
|
723 |
with gr.Column(scale=7):
|
724 |
with gr.Row():
|
725 |
with gr.Column(scale=6):
|
|
|
730 |
width=512,
|
731 |
sources=[],
|
732 |
)
|
733 |
+
|
734 |
with gr.Column(scale=6):
|
735 |
input_image_end = gr.Image(
|
736 |
label="end frame",
|
|
|
739 |
width=512,
|
740 |
sources=[],
|
741 |
)
|
742 |
+
|
743 |
with gr.Row():
|
744 |
with gr.Column(scale=1):
|
745 |
+
|
746 |
controlnet_cond_scale = gr.Slider(
|
747 |
+
label="Control Scale",
|
748 |
+
minimum=0.0,
|
749 |
+
maximum=10,
|
750 |
+
step=0.1,
|
751 |
value=1.0,
|
752 |
)
|
753 |
+
|
754 |
motion_bucket_id = gr.Slider(
|
755 |
+
label="Motion Bucket",
|
756 |
+
minimum=1,
|
757 |
+
maximum=180,
|
758 |
+
step=1,
|
759 |
value=100,
|
760 |
)
|
761 |
+
|
762 |
with gr.Column(scale=5):
|
763 |
output_video = gr.Image(
|
764 |
label="Output Video",
|
765 |
height=320,
|
766 |
width=1152,
|
767 |
)
|
768 |
+
|
|
|
769 |
with gr.Row():
|
770 |
+
gr.Markdown(
|
771 |
+
"""
|
772 |
## Citation
|
773 |
```bibtex
|
774 |
@article{wang2024framer,
|
|
|
778 |
year={2024}
|
779 |
}
|
780 |
```
|
781 |
+
"""
|
782 |
+
)
|
783 |
+
|
784 |
+
image_upload_button.upload(
|
785 |
+
fn=preprocess_image,
|
786 |
+
inputs=image_upload_button,
|
787 |
+
outputs=[input_image, first_frame_path, tracking_points],
|
788 |
+
)
|
789 |
+
|
790 |
+
image_end_upload_button.upload(
|
791 |
+
fn=preprocess_image_end,
|
792 |
+
inputs=image_end_upload_button,
|
793 |
+
outputs=[input_image_end, last_frame_path, tracking_points],
|
794 |
+
)
|
795 |
+
|
796 |
+
add_drag_button.click(
|
797 |
+
fn=add_drag,
|
798 |
+
inputs=tracking_points,
|
799 |
+
outputs=tracking_points,
|
800 |
+
)
|
801 |
+
|
802 |
+
delete_last_drag_button.click(
|
803 |
+
fn=delete_last_drag,
|
804 |
+
inputs=[tracking_points, first_frame_path, last_frame_path],
|
805 |
+
outputs=[tracking_points, input_image, input_image_end],
|
806 |
+
)
|
807 |
+
|
808 |
+
delete_last_step_button.click(
|
809 |
+
fn=delete_last_step,
|
810 |
+
inputs=[tracking_points, first_frame_path, last_frame_path],
|
811 |
+
outputs=[tracking_points, input_image, input_image_end],
|
812 |
+
)
|
813 |
+
|
814 |
+
reset_button.click(
|
815 |
+
fn=reset_states,
|
816 |
+
outputs=[input_image, input_image_end, first_frame_path, last_frame_path, output_video, tracking_points],
|
817 |
+
)
|
818 |
+
|
819 |
+
gr.on(
|
820 |
+
triggers=[input_image.select, input_image_end.select],
|
821 |
+
fn=add_tracking_points,
|
822 |
+
inputs=[tracking_points, first_frame_path, last_frame_path],
|
823 |
+
outputs=[tracking_points, input_image, input_image_end],
|
824 |
+
)
|
825 |
+
|
826 |
+
run_button.click(
|
827 |
+
fn=run,
|
828 |
+
inputs=[first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id],
|
829 |
+
outputs=output_video,
|
830 |
+
)
|
831 |
+
|
832 |
demo.launch()
|
@@ -1,14 +1,279 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
diffusers==0.24.0
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile pyproject.toml -o requirements.txt
|
3 |
+
accelerate==1.1.1
|
4 |
+
# via framer (pyproject.toml)
|
5 |
+
aiofiles==23.2.1
|
6 |
+
# via gradio
|
7 |
+
annotated-types==0.7.0
|
8 |
+
# via pydantic
|
9 |
+
anyio==4.6.2.post1
|
10 |
+
# via
|
11 |
+
# gradio
|
12 |
+
# httpx
|
13 |
+
# starlette
|
14 |
+
av==13.1.0
|
15 |
+
# via framer (pyproject.toml)
|
16 |
+
certifi==2024.8.30
|
17 |
+
# via
|
18 |
+
# httpcore
|
19 |
+
# httpx
|
20 |
+
# requests
|
21 |
+
charset-normalizer==3.4.0
|
22 |
+
# via requests
|
23 |
+
click==8.1.7
|
24 |
+
# via
|
25 |
+
# typer
|
26 |
+
# uvicorn
|
27 |
+
colorlog==6.9.0
|
28 |
+
# via framer (pyproject.toml)
|
29 |
diffusers==0.24.0
|
30 |
+
# via framer (pyproject.toml)
|
31 |
+
einops==0.8.0
|
32 |
+
# via framer (pyproject.toml)
|
33 |
+
exceptiongroup==1.2.2
|
34 |
+
# via anyio
|
35 |
+
fastapi==0.115.4
|
36 |
+
# via gradio
|
37 |
+
ffmpy==0.4.0
|
38 |
+
# via gradio
|
39 |
+
filelock==3.16.1
|
40 |
+
# via
|
41 |
+
# diffusers
|
42 |
+
# huggingface-hub
|
43 |
+
# torch
|
44 |
+
# transformers
|
45 |
+
# triton
|
46 |
+
fsspec==2024.10.0
|
47 |
+
# via
|
48 |
+
# gradio-client
|
49 |
+
# huggingface-hub
|
50 |
+
# torch
|
51 |
+
gradio==5.5.0
|
52 |
+
# via
|
53 |
+
# framer (pyproject.toml)
|
54 |
+
# spaces
|
55 |
+
gradio-client==1.4.2
|
56 |
+
# via gradio
|
57 |
+
h11==0.14.0
|
58 |
+
# via
|
59 |
+
# httpcore
|
60 |
+
# uvicorn
|
61 |
+
hf-transfer==0.1.8
|
62 |
+
# via framer (pyproject.toml)
|
63 |
+
httpcore==1.0.6
|
64 |
+
# via httpx
|
65 |
+
httpx==0.27.2
|
66 |
+
# via
|
67 |
+
# gradio
|
68 |
+
# gradio-client
|
69 |
+
# safehttpx
|
70 |
+
# spaces
|
71 |
+
huggingface-hub==0.25.2
|
72 |
+
# via
|
73 |
+
# framer (pyproject.toml)
|
74 |
+
# accelerate
|
75 |
+
# diffusers
|
76 |
+
# gradio
|
77 |
+
# gradio-client
|
78 |
+
# tokenizers
|
79 |
+
# transformers
|
80 |
+
idna==3.10
|
81 |
+
# via
|
82 |
+
# anyio
|
83 |
+
# httpx
|
84 |
+
# requests
|
85 |
+
imageio==2.36.0
|
86 |
+
# via framer (pyproject.toml)
|
87 |
+
importlib-metadata==8.5.0
|
88 |
+
# via diffusers
|
89 |
+
jinja2==3.1.4
|
90 |
+
# via
|
91 |
+
# gradio
|
92 |
+
# torch
|
93 |
+
markdown-it-py==3.0.0
|
94 |
+
# via rich
|
95 |
+
markupsafe==2.1.5
|
96 |
+
# via
|
97 |
+
# gradio
|
98 |
+
# jinja2
|
99 |
+
mdurl==0.1.2
|
100 |
+
# via markdown-it-py
|
101 |
+
mpmath==1.3.0
|
102 |
+
# via sympy
|
103 |
+
networkx==3.4.2
|
104 |
+
# via torch
|
105 |
+
numpy==1.24.3
|
106 |
+
# via
|
107 |
+
# accelerate
|
108 |
+
# diffusers
|
109 |
+
# gradio
|
110 |
+
# imageio
|
111 |
+
# opencv-python
|
112 |
+
# pandas
|
113 |
+
# scipy
|
114 |
+
# torchvision
|
115 |
+
# transformers
|
116 |
+
nvidia-cublas-cu12==12.1.3.1
|
117 |
+
# via
|
118 |
+
# nvidia-cudnn-cu12
|
119 |
+
# nvidia-cusolver-cu12
|
120 |
+
# torch
|
121 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
122 |
+
# via torch
|
123 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
124 |
+
# via torch
|
125 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
126 |
+
# via torch
|
127 |
+
nvidia-cudnn-cu12==9.1.0.70
|
128 |
+
# via torch
|
129 |
+
nvidia-cufft-cu12==11.0.2.54
|
130 |
+
# via torch
|
131 |
+
nvidia-curand-cu12==10.3.2.106
|
132 |
+
# via torch
|
133 |
+
nvidia-cusolver-cu12==11.4.5.107
|
134 |
+
# via torch
|
135 |
+
nvidia-cusparse-cu12==12.1.0.106
|
136 |
+
# via
|
137 |
+
# nvidia-cusolver-cu12
|
138 |
+
# torch
|
139 |
+
nvidia-nccl-cu12==2.20.5
|
140 |
+
# via torch
|
141 |
+
nvidia-nvjitlink-cu12==12.6.77
|
142 |
+
# via
|
143 |
+
# nvidia-cusolver-cu12
|
144 |
+
# nvidia-cusparse-cu12
|
145 |
+
nvidia-nvtx-cu12==12.1.105
|
146 |
+
# via torch
|
147 |
+
opencv-python==4.10.0.84
|
148 |
+
# via framer (pyproject.toml)
|
149 |
+
orjson==3.10.11
|
150 |
+
# via gradio
|
151 |
+
packaging==24.2
|
152 |
+
# via
|
153 |
+
# accelerate
|
154 |
+
# gradio
|
155 |
+
# gradio-client
|
156 |
+
# huggingface-hub
|
157 |
+
# spaces
|
158 |
+
# transformers
|
159 |
+
pandas==2.2.3
|
160 |
+
# via gradio
|
161 |
+
pillow==11.0.0
|
162 |
+
# via
|
163 |
+
# diffusers
|
164 |
+
# gradio
|
165 |
+
# imageio
|
166 |
+
# torchvision
|
167 |
+
psutil==5.9.8
|
168 |
+
# via
|
169 |
+
# accelerate
|
170 |
+
# spaces
|
171 |
+
pydantic==2.9.2
|
172 |
+
# via
|
173 |
+
# fastapi
|
174 |
+
# gradio
|
175 |
+
# spaces
|
176 |
+
pydantic-core==2.23.4
|
177 |
+
# via pydantic
|
178 |
+
pydub==0.25.1
|
179 |
+
# via gradio
|
180 |
+
pygments==2.18.0
|
181 |
+
# via rich
|
182 |
+
python-dateutil==2.9.0.post0
|
183 |
+
# via pandas
|
184 |
+
python-multipart==0.0.12
|
185 |
+
# via gradio
|
186 |
+
pytz==2024.2
|
187 |
+
# via pandas
|
188 |
+
pyyaml==6.0.2
|
189 |
+
# via
|
190 |
+
# accelerate
|
191 |
+
# gradio
|
192 |
+
# huggingface-hub
|
193 |
+
# transformers
|
194 |
+
regex==2024.11.6
|
195 |
+
# via
|
196 |
+
# diffusers
|
197 |
+
# transformers
|
198 |
+
requests==2.32.3
|
199 |
+
# via
|
200 |
+
# diffusers
|
201 |
+
# huggingface-hub
|
202 |
+
# spaces
|
203 |
+
# transformers
|
204 |
+
rich==13.9.4
|
205 |
+
# via typer
|
206 |
+
ruff==0.7.3
|
207 |
+
# via gradio
|
208 |
+
safehttpx==0.1.1
|
209 |
+
# via gradio
|
210 |
+
safetensors==0.4.5
|
211 |
+
# via
|
212 |
+
# accelerate
|
213 |
+
# diffusers
|
214 |
+
# transformers
|
215 |
+
scipy==1.14.1
|
216 |
+
# via framer (pyproject.toml)
|
217 |
+
semantic-version==2.10.0
|
218 |
+
# via gradio
|
219 |
+
shellingham==1.5.4
|
220 |
+
# via typer
|
221 |
+
six==1.16.0
|
222 |
+
# via python-dateutil
|
223 |
+
sniffio==1.3.1
|
224 |
+
# via
|
225 |
+
# anyio
|
226 |
+
# httpx
|
227 |
+
spaces==0.30.4
|
228 |
+
# via framer (pyproject.toml)
|
229 |
+
starlette==0.41.2
|
230 |
+
# via
|
231 |
+
# fastapi
|
232 |
+
# gradio
|
233 |
+
sympy==1.13.3
|
234 |
+
# via torch
|
235 |
+
tokenizers==0.20.3
|
236 |
+
# via transformers
|
237 |
+
tomlkit==0.12.0
|
238 |
+
# via gradio
|
239 |
+
torch==2.4.0
|
240 |
+
# via
|
241 |
+
# framer (pyproject.toml)
|
242 |
+
# accelerate
|
243 |
+
# torchvision
|
244 |
+
torchvision==0.19.0
|
245 |
+
# via framer (pyproject.toml)
|
246 |
+
tqdm==4.67.0
|
247 |
+
# via
|
248 |
+
# huggingface-hub
|
249 |
+
# transformers
|
250 |
+
transformers==4.46.2
|
251 |
+
# via framer (pyproject.toml)
|
252 |
+
triton==3.0.0
|
253 |
+
# via torch
|
254 |
+
typer==0.13.0
|
255 |
+
# via gradio
|
256 |
+
typing-extensions==4.12.2
|
257 |
+
# via
|
258 |
+
# anyio
|
259 |
+
# fastapi
|
260 |
+
# gradio
|
261 |
+
# gradio-client
|
262 |
+
# huggingface-hub
|
263 |
+
# pydantic
|
264 |
+
# pydantic-core
|
265 |
+
# rich
|
266 |
+
# spaces
|
267 |
+
# torch
|
268 |
+
# typer
|
269 |
+
# uvicorn
|
270 |
+
tzdata==2024.2
|
271 |
+
# via pandas
|
272 |
+
urllib3==2.2.3
|
273 |
+
# via requests
|
274 |
+
uvicorn==0.32.0
|
275 |
+
# via gradio
|
276 |
+
websockets==12.0
|
277 |
+
# via gradio-client
|
278 |
+
zipp==3.21.0
|
279 |
+
# via importlib-metadata
|