github-actions[bot] commited on
Commit
83e6899
·
0 Parent(s):
Dockerfile ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10.15-bullseye
2
+
3
+ RUN apt-get update && \
4
+ apt-get install -y \
5
+ # General dependencies
6
+ locales \
7
+ locales-all && \
8
+ # Clean local repository of package files since they won't be needed anymore.
9
+ # Make sure this line is called after all apt-get update/install commands have
10
+ # run.
11
+ apt-get clean && \
12
+ # Also delete the index files which we also don't need anymore.
13
+ rm -rf /var/lib/apt/lists/*
14
+
15
+ ENV LC_ALL en_US.UTF-8
16
+ ENV LANG en_US.UTF-8
17
+ ENV LANGUAGE en_US.UTF-8
18
+
19
+ # Create and activate virtual environment
20
+ RUN python -m venv /opt/venv
21
+ ENV PATH="/opt/venv/bin:$PATH"
22
+
23
+ # Install dependencies
24
+ COPY requirements.txt .
25
+ RUN pip install -r requirements.txt
26
+
27
+ # Create non-root user and give write access to /opt/venv
28
+ RUN groupadd -g 900 mesop && \
29
+ useradd -u 900 -s /bin/bash -g mesop mesop && \
30
+ chown -R mesop:mesop /opt/venv && chmod -R 777 /opt/venv
31
+
32
+ USER mesop
33
+
34
+ # Add app code here
35
+ COPY . /srv/mesop-app
36
+ WORKDIR /srv/mesop-app
37
+
38
+ # Run Mesop through gunicorn. Should be available at localhost:8080
39
+ CMD ["gunicorn", "--bind", "0.0.0.0:8080", "main:me"]
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Mesop Doc Bot
3
+ emoji: 👓
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: docker
7
+ pinned: false
8
+ license: apache-2.0
9
+ app_port: 8080
10
+ ---
11
+
12
+ # Docbot
13
+
14
+ Answers questions grounded based on docs
15
+
16
+ ## Setup
17
+
18
+ From workspace root:
19
+
20
+ ```sh
21
+ rm -rf ai/docbot/venv && \
22
+ virtualenv --python python3 ai/docbot/venv && \
23
+ source ai/docbot/venv/bin/activate && \
24
+ pip install -r ai/docbot/requirements.txt
25
+ ```
26
+
27
+ ## How to use
28
+
29
+ **Run app**:
30
+
31
+ ```sh
32
+ mesop chat.py
33
+ ```
34
+
35
+ **Create index**:
36
+
37
+ ```sh
38
+ python docs_index.py --build-index
39
+ ```
40
+
41
+ **Load (or create, if it doesn't exist yet) index**:
42
+
43
+ ```sh
44
+ python docs_index.py
45
+ ```
46
+
47
+ ## Evals
48
+
49
+ **Record eval results**
50
+
51
+ ```py
52
+ $ python recorder.py --out-dir gen/evals/one_source
53
+ ```
54
+
55
+ **View eval results**
56
+
57
+ ```py
58
+ $ EVAL_DIR=gen/evals/no_source_1 EVAL_DIR_2=gen/evals/one_source mesop eval_viewer.py
59
+ ```
60
+
61
+ ## Roadmap
62
+
63
+ TODOs:
64
+
65
+ - Respect dark themes into frame
66
+ - Auto-focus into prompt (via post message) _DONE_
67
+ - Support ESC to close iframe _DONE_
68
+ - Do evals against suggested questions _DONE_
69
+ - Prompt engineer
70
+ - Do not show code _skip_
71
+ - File new issue if asking for feature that doesn't exist _skip_
72
+
73
+ MAYBE:
74
+
75
+ - Ask Mesop to consolidate sources from the same page
76
+
77
+ ### UX
78
+
79
+ - Scroll to specific part of text? DONE
80
+ - Show code (syntax highlighting)
81
+ - Don't show sources which are not cited? done
82
+ - Renumber?? done
83
+ - File GitHub issue if the response isn't good DONE
84
+
85
+ ### APIs
86
+
87
+ - Use Google embedding API? done
88
+
89
+ ### Indexing
90
+
91
+ - Index GitHub issues / discussions?
92
+ - https://docs.llamaindex.ai/en/stable/examples/usecases/github_issue_analysis/
93
+ - DONE filter out blog posts? (the --- mark settings)
94
+ - DONE filter out internal docs, e.g. bazel commands
95
+ - DONE set title for all pages OR retrieve title by using mkdocs.yml??
96
+ - Maybe load in the code snippets? Depends on whether that's a goal.
97
+
98
+ ### Docs TODOs:
99
+
100
+ - Why doesn't mesop have this new feature? attribute is missing
__init__.py ADDED
File without changes
citation.js ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import {
2
+ LitElement,
3
+ html,
4
+ css,
5
+ } from 'https://cdn.jsdelivr.net/gh/lit/dist@3/core/lit-core.min.js';
6
+
7
+ class CitationComponent extends LitElement {
8
+ static styles = css`
9
+ a {
10
+ display: block;
11
+ text-decoration: none;
12
+ color: var(--sys-on-surface);
13
+ }
14
+
15
+ .container {
16
+ background: var(--sys-surface-container-high);
17
+ border-radius: 12px;
18
+ }
19
+
20
+ .container:hover {
21
+ background: var(--sys-surface-container-highest);
22
+ }
23
+ `;
24
+
25
+ static properties = {
26
+ url: {type: String},
27
+ };
28
+
29
+ constructor() {
30
+ super();
31
+ this.url = '';
32
+ }
33
+
34
+ render() {
35
+ return html`
36
+ <a class="container" href="${this.url}" target="_blank">
37
+ <slot></slot>
38
+ </a>
39
+ `;
40
+ }
41
+
42
+ _onClick() {
43
+ window.open(this.url, '_blank');
44
+ console.log('open url', this.url);
45
+ }
46
+ }
47
+
48
+ customElements.define('citation-component', CitationComponent);
deploy_to_hf.sh ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ set -e
4
+
5
+ error_handler() {
6
+ echo "Error: An error occurred. Exiting script."
7
+ exit 1
8
+ }
9
+
10
+ # Set up error handling
11
+ trap error_handler ERR
12
+
13
+ if [ $# -eq 0 ]; then
14
+ echo "Error: Please provide a destination path as an argument."
15
+ exit 1
16
+ fi
17
+
18
+ DEST_PATH="$1"
19
+
20
+ if [ ! -d "$DEST_PATH" ]; then
21
+ echo "Destination path does not exist. Creating it now."
22
+ mkdir -p "$DEST_PATH"
23
+ fi
24
+
25
+ # Build the docs index
26
+ cd ai/docbot && python docs_index.py --build-index && cd -
27
+
28
+ # Get the path of this script which is the demo dir.
29
+ DEMO_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
30
+ cp -R "$DEMO_DIR/" "$DEST_PATH"
31
+ echo "Demo files have been copied to $DEST_PATH"
32
+ cd "$DEST_PATH/docbot"
33
+ echo "Changed directory to $DEST_PATH"
34
+
35
+ git init
36
+ git branch -m main
37
+ git config user.name github-actions[bot]
38
+ git config user.email github-actions[bot]@users.noreply.github.com
39
+ echo "Configured git user"
40
+ git add .
41
+ git commit -m "Commit"
42
+ git remote add hf https://wwwillchen:$HF_TOKEN@huggingface.co/spaces/wwwillchen/mesop-docs-bot || true
43
+ git push --force --set-upstream hf main
44
+
45
+ echo "Pushed to: https://huggingface.co/spaces/wwwillchen/mesop-docs-bot. Check the logs to see that it's deployed correctly."
docs_index.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ import nest_asyncio
5
+ import Stemmer
6
+ from llama_index.core import (
7
+ PromptTemplate,
8
+ Settings,
9
+ SimpleDirectoryReader,
10
+ StorageContext,
11
+ VectorStoreIndex,
12
+ load_index_from_storage,
13
+ )
14
+ from llama_index.core.node_parser import SentenceSplitter
15
+ from llama_index.core.query_engine import CitationQueryEngine
16
+ from llama_index.core.retrievers import QueryFusionRetriever
17
+ from llama_index.core.schema import NodeWithScore as NodeWithScore
18
+ from llama_index.embeddings.google import GeminiEmbedding
19
+ from llama_index.llms.gemini import Gemini
20
+ from llama_index.retrievers.bm25 import BM25Retriever
21
+
22
+ import mesop as me
23
+
24
+ nest_asyncio.apply()
25
+
26
+ CITATION_QA_TEMPLATE = PromptTemplate(
27
+ "Please provide an answer based solely on the provided sources. "
28
+ "When referencing information from a source, "
29
+ "cite the appropriate source(s) using their corresponding numbers. "
30
+ "Every answer should include at least one source citation. "
31
+ "Only cite a source when you are explicitly referencing it. "
32
+ "If you are sure NONE of the sources are helpful, then say: 'Sorry, I didn't find any docs about this.'"
33
+ "If you are not sure if any of the sources are helpful, then say: 'You might find this helpful', where 'this' is the source's title.'"
34
+ "DO NOT say Source 1, Source 2, etc. Only reference sources like this: [1], [2], etc."
35
+ "I want you to pick just ONE source to answer the question."
36
+ "For example:\n"
37
+ "Source 1:\n"
38
+ "The sky is red in the evening and blue in the morning.\n"
39
+ "Source 2:\n"
40
+ "Water is wet when the sky is red.\n"
41
+ "Query: When is water wet?\n"
42
+ "Answer: Water will be wet when the sky is red [2], "
43
+ "which occurs in the evening [1].\n"
44
+ "Now it's your turn. Below are several numbered sources of information:"
45
+ "\n------\n"
46
+ "{context_str}"
47
+ "\n------\n"
48
+ "Query: {query_str}\n"
49
+ "Answer: "
50
+ )
51
+
52
+ os.environ["GOOGLE_API_KEY"] = os.environ["GEMINI_API_KEY"]
53
+
54
+
55
+ def get_meta(file_path: str) -> dict[str, str]:
56
+ with open(file_path) as f:
57
+ title = f.readline().strip()
58
+ if title.startswith("# "):
59
+ title = title[2:]
60
+ else:
61
+ title = (
62
+ file_path.split("/")[-1]
63
+ .replace(".md", "")
64
+ .replace("-", " ")
65
+ .capitalize()
66
+ )
67
+
68
+ file_path = file_path.replace(".md", "")
69
+ CONST = "../../docs/"
70
+ docs_index = file_path.index(CONST)
71
+ docs_path = file_path[docs_index + len(CONST) :]
72
+
73
+ url = "https://mesop-dev.github.io/mesop/" + docs_path
74
+
75
+ print(f"URL: {url}")
76
+ return {
77
+ "url": url,
78
+ "title": title,
79
+ }
80
+
81
+
82
+ embed_model = GeminiEmbedding(
83
+ model_name="models/text-embedding-004", api_key=os.environ["GOOGLE_API_KEY"]
84
+ )
85
+ Settings.embed_model = embed_model
86
+
87
+ PERSIST_DIR = "./gen"
88
+
89
+
90
+ def build_or_load_index():
91
+ if not os.path.exists(PERSIST_DIR) or "--build-index" in sys.argv:
92
+ print("Building index")
93
+
94
+ documents = SimpleDirectoryReader(
95
+ "../../docs/",
96
+ required_exts=[
97
+ ".md",
98
+ ],
99
+ exclude=[
100
+ "showcase.md",
101
+ "demo.md",
102
+ "blog",
103
+ "internal",
104
+ ],
105
+ file_metadata=get_meta,
106
+ recursive=True,
107
+ ).load_data()
108
+ for doc in documents:
109
+ doc.excluded_llm_metadata_keys = ["url"]
110
+ splitter = SentenceSplitter(chunk_size=512)
111
+
112
+ nodes = splitter.get_nodes_from_documents(documents)
113
+ bm25_retriever = BM25Retriever.from_defaults(
114
+ nodes=nodes,
115
+ similarity_top_k=5,
116
+ # Optional: We can pass in the stemmer and set the language for stopwords
117
+ # This is important for removing stopwords and stemming the query + text
118
+ # The default is english for both
119
+ stemmer=Stemmer.Stemmer("english"),
120
+ language="english",
121
+ )
122
+ bm25_retriever.persist(PERSIST_DIR + "/bm25_retriever")
123
+
124
+ index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
125
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
126
+ return index, bm25_retriever
127
+ else:
128
+ print("Loading index")
129
+ bm25_retriever = BM25Retriever.from_persist_dir(
130
+ PERSIST_DIR + "/bm25_retriever"
131
+ )
132
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
133
+ index = load_index_from_storage(storage_context)
134
+ return index, bm25_retriever
135
+
136
+
137
+ if me.runtime().is_hot_reload_in_progress:
138
+ print("Hot reload - skip building index!")
139
+ query_engine = me._query_engine
140
+ bm25_retriever = me._bm25_retriever
141
+
142
+ else:
143
+ index, bm25_retriever = build_or_load_index()
144
+ llm = Gemini(model="models/gemini-1.5-flash-latest")
145
+ retriever = QueryFusionRetriever(
146
+ [
147
+ index.as_retriever(similarity_top_k=5),
148
+ bm25_retriever,
149
+ ],
150
+ llm=llm,
151
+ num_queries=1,
152
+ use_async=True,
153
+ similarity_top_k=5,
154
+ )
155
+ query_engine = CitationQueryEngine.from_args(
156
+ index,
157
+ retriever=retriever,
158
+ llm=llm,
159
+ citation_qa_template=CITATION_QA_TEMPLATE,
160
+ similarity_top_k=5,
161
+ embedding_model=embed_model,
162
+ streaming=True,
163
+ )
164
+
165
+ blocking_query_engine = CitationQueryEngine.from_args(
166
+ index,
167
+ retriever=retriever,
168
+ llm=llm,
169
+ citation_qa_template=CITATION_QA_TEMPLATE,
170
+ similarity_top_k=5,
171
+ embedding_model=embed_model,
172
+ streaming=False,
173
+ )
174
+ # TODO: replace with proper mechanism for persisting objects
175
+ # across hot reloads
176
+ me._query_engine = query_engine
177
+ me._bm25_retriever = bm25_retriever
178
+
179
+
180
+ NEWLINE = "\n"
181
+
182
+
183
+ def ask(query: str):
184
+ return query_engine.query(query)
185
+
186
+
187
+ def retrieve(query: str):
188
+ return bm25_retriever.retrieve(query)
eval_viewer.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import os
3
+ import sys
4
+ import urllib.parse
5
+ from dataclasses import dataclass, field
6
+
7
+ import mesop as me
8
+
9
+ # Get the directory from the environment variable
10
+ EVAL_DIR = os.environ.get("EVAL_DIR")
11
+
12
+ if EVAL_DIR:
13
+ print(f"Directory set to: {EVAL_DIR}")
14
+ else:
15
+ print(
16
+ "No directory specified. Exiting! Set the EVAL_DIR environment variable."
17
+ )
18
+ sys.exit(1)
19
+
20
+ EVAL_DIR_2 = os.environ.get("EVAL_DIR_2")
21
+
22
+ if EVAL_DIR_2:
23
+ print(f"Eval directory 2 set to: {EVAL_DIR_2}")
24
+
25
+
26
+ @dataclass
27
+ class Item:
28
+ query: str = ""
29
+ input: str = ""
30
+ output: str = ""
31
+
32
+
33
+ @dataclass
34
+ class EvalGroup:
35
+ items: list[Item] = field(default_factory=list)
36
+
37
+
38
+ @me.stateclass
39
+ class State:
40
+ directories: list[str]
41
+ group_1: EvalGroup
42
+ group_2: EvalGroup
43
+
44
+
45
+ def load_eval_dir(eval_dir: str):
46
+ # Read all directories from args.dir
47
+ directories = [
48
+ d for d in os.listdir(eval_dir) if os.path.isdir(os.path.join(eval_dir, d))
49
+ ]
50
+ items: list[Item] = []
51
+ for dir in directories:
52
+ input_path = os.path.join(eval_dir, dir, "input.txt")
53
+ output_path = os.path.join(eval_dir, dir, "output.txt")
54
+
55
+ with open(input_path) as f:
56
+ input_content = f.read()
57
+ with open(output_path) as f:
58
+ output_content = f.read()
59
+
60
+ item = Item(
61
+ input=input_content,
62
+ output=output_content,
63
+ query=urllib.parse.unquote(dir),
64
+ )
65
+ items.append(item)
66
+ return items
67
+
68
+
69
+ def on_load(e: me.LoadEvent):
70
+ state = me.state(State)
71
+ assert EVAL_DIR
72
+ state.group_1.items = load_eval_dir(EVAL_DIR)
73
+ if EVAL_DIR_2:
74
+ state.group_2.items = load_eval_dir(EVAL_DIR_2)
75
+ print("state.group_2.items", state.group_2.items)
76
+
77
+ # Store the directories in the state for later use
78
+ # me.state(State).directories = directories
79
+
80
+
81
+ @me.page(
82
+ on_load=on_load,
83
+ security_policy=me.SecurityPolicy(
84
+ allowed_script_srcs=[
85
+ "https://cdn.jsdelivr.net",
86
+ ]
87
+ ),
88
+ )
89
+ def index():
90
+ state = me.state(State)
91
+ with scrollable():
92
+ with me.box(
93
+ style=me.Style(
94
+ margin=me.Margin.symmetric(horizontal="auto", vertical=24),
95
+ # background="white",
96
+ padding=me.Padding.symmetric(horizontal=16),
97
+ )
98
+ ):
99
+ me.text("Eval viewer", type="headline-3")
100
+ me.text(f"Group 1: {len(state.group_1.items)} items")
101
+ me.text(f"Group 2: {len(state.group_2.items)} items")
102
+
103
+ # Zip group_1 and group_2 items
104
+ zipped_items = list(
105
+ itertools.zip_longest(
106
+ state.group_1.items, state.group_2.items, fillvalue=None
107
+ )
108
+ )
109
+ with me.box(
110
+ style=me.Style(
111
+ display="grid",
112
+ grid_template_columns="160px 300px 1fr 300px 1fr"
113
+ if state.group_2.items
114
+ else "160px 1fr 1fr",
115
+ gap=16,
116
+ )
117
+ ):
118
+ # Header
119
+ me.text("Query", style=me.Style(font_weight=500))
120
+ me.text("Input (1)", style=me.Style(font_weight=500))
121
+ me.text("Output (1)", style=me.Style(font_weight=500))
122
+ if state.group_2.items:
123
+ me.text("Input (2)", style=me.Style(font_weight=500))
124
+ me.text("Output (2)", style=me.Style(font_weight=500))
125
+ # Body
126
+ for item_1, item_2 in zipped_items:
127
+ if item_1:
128
+ me.text(item_1.query, style=me.Style(font_weight=500))
129
+ me.markdown(
130
+ item_1.input, style=me.Style(overflow_y="auto", max_height=400)
131
+ )
132
+ me.text(item_1.output)
133
+
134
+ if item_2:
135
+ me.markdown(
136
+ item_2.input, style=me.Style(overflow_y="auto", max_height=400)
137
+ )
138
+ me.text(item_2.output)
139
+
140
+
141
+ @me.web_component(path="./scrollable.js")
142
+ def scrollable(
143
+ *,
144
+ key: str | None = None,
145
+ ):
146
+ return me.insert_web_component(
147
+ name="scrollable-component",
148
+ key=key,
149
+ )
frame_listener.js ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Listen for 'focus' message from the parent window
2
+ window.addEventListener('message', function (event) {
3
+ if (event.data === 'focus') {
4
+ // Find the textarea element
5
+ const textarea = document.querySelector('textarea');
6
+ console.log('focusing on textarea', textarea);
7
+ // If the textarea is found, focus on it
8
+ if (textarea) {
9
+ textarea.focus();
10
+ } else {
11
+ console.warn('Textarea not found for focus');
12
+ }
13
+ }
14
+ });
15
+
16
+ window.addEventListener('keydown', function (event) {
17
+ if (event.key === 'Escape') {
18
+ if (document.activeElement) {
19
+ document.activeElement.blur();
20
+ }
21
+ // Send a message to the parent window to close this iframe
22
+ window.parent.postMessage('closeDocbot', '*');
23
+ }
24
+ });
gen/bm25_retriever/corpus.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
gen/bm25_retriever/corpus.mmindex.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [0, 1458, 2833, 4188, 5580, 6906, 8205, 9686, 11068, 12431, 13999, 15367, 16714, 17934, 19236, 20471, 22878, 24507, 26058, 28184, 30194, 33572, 36486, 37986, 39471, 40953, 42418, 44129, 45501, 47145, 49547, 51007, 52511, 53918, 55147, 56513, 58168, 59391, 60763, 61986, 63491, 64931, 66272, 67592, 68983, 70494, 71773, 73205, 75030, 76466, 78193, 79728, 81072, 82405, 83765, 85089, 86360, 87904, 89493, 90790, 92225, 93495, 94943, 96208, 98195, 100123, 101478, 103087, 104820, 109305, 111356, 112862, 115903, 117447, 118857, 120339, 121974, 124629, 128528, 132678, 136830, 140845, 145010, 147939, 149579, 150998, 152601, 154162, 157732, 160709, 164405, 168452, 171456, 173002, 174698, 176102, 177700, 179266, 183009, 187447, 191693, 194930, 197577, 199662, 202702, 204485, 205874, 207795, 209224, 210580, 211936, 213219, 214798, 216458, 218254, 219876, 221339, 222970, 224320, 225870, 227821, 229342, 231291, 233012, 235229, 237027, 239108, 240813, 242731, 244218, 246048, 247391, 248687, 249964, 251756, 253101, 254767, 256144, 257440, 258717, 260049, 261331, 262590, 263897, 265200, 266569, 267932, 269284, 270779, 272070, 273359, 274811, 276142, 277431, 278688, 280050, 281367, 282865, 284201, 285495, 286763, 288192, 289530, 290927, 292399, 293779, 295251, 296608, 297918, 299213, 300525, 301821, 303098, 304677, 306043, 307545, 309145, 310439, 311707, 313035, 314324, 315592, 316882, 318178, 319455, 320873, 322137, 323896, 325472, 327040, 329500, 330777, 332889, 335583, 337009, 338864, 341406, 342792, 344088, 345497, 346809, 348098, 349366, 350669, 351991, 353295, 354605, 355894, 357162, 358567, 359912, 361331, 362768, 364141, 365517, 366848, 368144, 369527, 370887, 372195, 373657, 375020, 376330, 377625, 379022, 380367, 381850, 383211, 384514, 385861, 387199, 388495, 389772, 391182, 392534, 393863, 395272, 396617, 397938, 399256, 400545, 401813, 403263, 404580, 406010, 407325, 408635, 409930, 411331, 412648, 414118, 415461, 416757, 418034, 419314, 420574, 422324, 423704, 425449, 426971, 428437, 429701, 431332, 432708, 434728, 436555, 438180, 439927, 441576, 443836, 445345, 446882, 448421, 449967, 452054, 453563, 454949, 456283, 457659, 459163, 460849, 462379, 463786, 465834, 467947, 469764, 471861, 473294, 475333, 476836, 478870, 480275, 481840, 483377, 486042, 488523, 490187, 491579, 493030, 494490, 495849, 497252, 499048, 500568, 502253, 503617, 505163, 506785, 508299, 509662, 510980, 512335, 513734, 515400, 516828, 518168, 519542, 520984, 522384, 523935, 525573, 526965, 528384, 530111, 531591, 533097, 534572, 537144, 538439, 540054, 542155, 544274, 545554, 548152, 550320, 551607, 554286, 555665, 557146, 559497, 560990, 562459, 563740, 565958, 567827, 569597, 571582, 572929, 574235, 575680, 577308, 578753, 579999, 581447, 582947, 584552, 586421, 587655, 589282, 591392, 593294, 595517, 597121, 598495, 600022, 601696, 603101, 604571, 605869, 607674, 609438, 611100, 612509, 614647, 616257, 617684, 619240, 620699, 622393, 625926, 627789, 629917, 631614, 633943, 635230, 636648, 638092, 639677, 641159, 643050, 644626, 646235, 647586, 649252, 650926, 653767, 655261, 656883, 658702, 660913, 662585, 664344, 665783, 667138, 668600, 670422, 672214, 674040, 675806, 677247, 678519, 680164, 681980, 683713, 685343, 686710, 689556, 693534, 697621, 701926, 705721, 708608, 711985, 713251, 715052, 716472, 718042, 719782, 721293, 722645, 724372, 727346, 729173, 731094, 733072, 734530, 736293, 737638, 739015, 740879, 742384, 744745, 747055, 749370, 750721]
gen/bm25_retriever/data.csc.index.npy ADDED
Binary file (44.9 kB). View file
 
gen/bm25_retriever/indices.csc.index.npy ADDED
Binary file (44.9 kB). View file
 
gen/bm25_retriever/indptr.csc.index.npy ADDED
Binary file (7.49 kB). View file
 
gen/bm25_retriever/params.index.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "k1": 1.5,
3
+ "b": 0.75,
4
+ "delta": 0.5,
5
+ "method": "lucene",
6
+ "idf_method": "lucene",
7
+ "dtype": "float32",
8
+ "int_dtype": "int32",
9
+ "num_docs": 445,
10
+ "version": "0.1.10"
11
+ }
gen/bm25_retriever/retriever.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "similarity_top_k": 5,
3
+ "verbose": false
4
+ }
gen/bm25_retriever/vocab.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"append": 0, "bordersid": 1, "regist": 2, "30": 3, "snippet": 4, "namedslot": 5, "catch": 6, "size": 7, "contain": 8, "write": 9, "z_index": 10, "grid_template_column": 11, "scienc": 12, "blank": 13, "slidetogglechangeev": 14, "trace": 15, "all": 16, "contribut": 17, "mel": 18, "exact": 19, "stylesheet": 20, "child": 21, "asdict": 22, "degrad": 23, "safeti": 24, "tailwind_input": 25, "sse": 26, "ts": 27, "way": 28, "trigger": 29, "gradiomesop": 30, "document": 31, "mesop_state_session_backend": 32, "nav": 33, "drawback": 34, "stack": 35, "theme_var": 36, "overal": 37, "locat": 38, "connection_uri": 39, "generic": 40, "attribut": 41, "fast": 42, "deseri": 43, "reus": 44, "display": 45, "a_web_compon": 46, "param_nam": 47, "rang": 48, "safelist": 49, "h1": 50, "maco": 51, "link_compon": 52, "oper": 53, "insensit": 54, "manual": 55, "temperatur": 56, "toy": 57, "rgba": 58, "bundl": 59, "calendar": 60, "us": 61, "power": 62, "convent": 63, "easili": 64, "chatmessag": 65, "extrem": 66, "autoplay": 67, "integ": 68, "protect": 69, "further": 70, "tyagi": 71, "tune": 72, "show": 73, "sinc": 74, "tip": 75, "site": 76, "who": 77, "is_desktop": 78, "prioriti": 79, "created_at": 80, "weight": 81, "generation_config": 82, "mkdir": 83, "is_open": 84, "instead": 85, "sophist": 86, "on_ent": 87, "strict": 88, "some": 89, "_first_": 90, "mount": 91, "alloc": 92, "_blank": 93, "on_upload": 94, "doe": 95, "doesn": 96, "font_siz": 97, "facilit": 98, "1804890091816644906": 99, "learn": 100, "well": 101, "36": 102, "steeper": 103, "npx": 104, "def": 105, "collection_nam": 106, "lock": 107, "panel": 108, "gemini_api_key": 109, "id": 110, "end": 111, "reuseexistingserv": 112, "mesop_state_session_backend_sql_connection_uri": 113, "helper": 114, "night": 115, "imag": 116, "module_nam": 117, "ipynb": 118, "foo": 119, "assist": 120, "transport": 121, "loop": 122, "modular": 123, "button": 124, "versatil": 125, "social": 126, "common": 127, "detail": 128, "mean": 129, "node": 130, "auth": 131, "flask": 132, "host": 133, "mark": 134, "one": 135, "bad": 136, "arbitrari": 137, "scheme": 138, "equival": 139, "my": 140, "select": 141, "ahd": 142, "inform": 143, "continu": 144, "desir": 145, "is_load": 146, "decrementev": 147, "frequent": 148, "anthrop": 149, "user_messag": 150, "wwwillchen": 151, "send_prompt_flash": 152, "same": 153, "unless": 154, "fragment": 155, "onli": 156, "extern": 157, "accordion": 158, "firebase_auth_app": 159, "chat": 160, "card": 161, "we": 162, "posit": 163, "style": 164, "usag": 165, "mediadevic": 166, "comparison": 167, "ctrl": 168, "backend": 169, "capabl": 170, "life": 171, "ssh": 172, "googl": 173, "background_color": 174, "hello_world": 175, "con": 176, "emb": 177, "ok": 178, "happen": 179, "emoji": 180, "sqlalchemi": 181, "radioopt": 182, "content_layout": 183, "shell": 184, "when": 185, "see": 186, "content_upload": 187, "connect": 188, "due": 189, "2024": 190, "twitter": 191, "popular": 192, "various": 193, "whenev": 194, "markdown_demo": 195, "express": 196, "has": 197, "mode": 198, "persist": 199, "badg": 200, "await": 201, "than": 202, "much": 203, "familiar": 204, "main": 205, "1000": 206, "system": 207, "first": 208, "int": 209, "checkboxchangeev": 210, "except": 211, "skew": 212, "especi": 213, "true": 214, "dark_mod": 215, "handl": 216, "set": 217, "py": 218, "image_data": 219, "mesop_colab_getting_start": 220, "case": 221, "should": 222, "interpol": 223, "make": 224, "method": 225, "placehold": 226, "librari": 227, "real": 228, "backward": 229, "your_servic": 230, "cloud": 231, "lab": 232, "queu": 233, "layout": 234, "grow": 235, "ref_src": 236, "fair": 237, "via": 238, "firebas": 239, "zone": 240, "json": 241, "bandwidth": 242, "lambda": 243, "without": 244, "somewher": 245, "modul": 246, "switcher": 247, "audio": 248, "str": 249, "toc": 250, "footgun": 251, "condit": 252, "create_al": 253, "logo": 254, "50vh": 255, "adapt": 256, "change_model_opt": 257, "believ": 258, "per": 259, "com": 260, "cach": 261, "previous": 262, "also": 263, "page_2": 264, "widget": 265, "light_mod": 266, "fix": 267, "demand": 268, "seamless": 269, "easier": 270, "push": 271, "repositori": 272, "breakpoint": 273, "switch": 274, "declar": 275, "dure": 276, "function": 277, "balanc": 278, "after": 279, "think": 280, "alway": 281, "set_theme_mod": 282, "concaten": 283, "offici": 284, "stateless": 285, "codelab": 286, "whi": 287, "fff": 288, "least": 289, "incred": 290, "allowed_iframe_par": 291, "everi": 292, "replac": 293, "tailwindcss": 294, "concept": 295, "datetim": 296, "12": 297, "560": 298, "around": 299, "navig": 300, "touch": 301, "want": 302, "result": 303, "nice": 304, "provid": 305, "conclus": 306, "you": 307, "event": 308, "take": 309, "end_of_messag": 310, "e0e0e0": 311, "reason": 312, "1024": 313, "find": 314, "design": 315, "customiz": 316, "send": 317, "model": 318, "on_click": 319, "procfil": 320, "unredact": 321, "count": 322, "rout": 323, "abov": 324, "16px": 325, "call_api": 326, "500": 327, "instal": 328, "data": 329, "individu": 330, "sever": 331, "shortcut": 332, "dialog": 333, "slide": 334, "constraint": 335, "32123": 336, "evalu": 337, "extend": 338, "cannot": 339, "valid": 340, "paramet": 341, "b9e1ff": 342, "cover": 343, "caveat": 344, "git": 345, "upgrad": 346, "flavor": 347, "stream": 348, "simpl": 349, "check": 350, "increment": 351, "broader": 352, "firestor": 353, "consid": 354, "determin": 355, "modern": 356, "_this": 357, "figur": 358, "decrement": 359, "mesopev": 360, "b64encod": 361, "venv": 362, "grand": 363, "transform": 364, "break": 365, "assum": 366, "expansion_panel": 367, "yield": 368, "textarea": 369, "insert_web_compon": 370, "know": 371, "better": 372, "your_project_id": 373, "page2": 374, "class": 375, "window": 376, "trustworthi": 377, "scope": 378, "deliv": 379, "row": 380, "priorit": 381, "_root": 382, "call_claude_sonnet": 383, "sql": 384, "mani": 385, "full": 386, "angular": 387, "up": 388, "bool": 389, "safe": 390, "build": 391, "datepickerchangeev": 392, "dark": 393, "iter": 394, "final": 395, "instanti": 396, "refus": 397, "560px": 398, "postgresql": 399, "allowed_connect_src": 400, "magic": 401, "selectselectionchangeev": 402, "export": 403, "directori": 404, "larger": 405, "root": 406, "o1": 407, "embrac": 408, "flexibl": 409, "compon": 410, "process": 411, "showcas": 412, "config": 413, "text_to_text": 414, "unread": 415, "pathmap": 416, "two": 417, "often": 418, "in_progress": 419, "notebook": 420, "pre": 421, "justmycod": 422, "3px": 423, "mobil": 424, "probabl": 425, "decreas": 426, "depth": 427, "identifi": 428, "set_gemini_api_key": 429, "establish": 430, "selectopt": 431, "workaround": 432, "knowledg": 433, "menu": 434, "dispatch": 435, "caus": 436, "slot": 437, "special": 438, "almost": 439, "intern": 440, "liter": 441, "jpeg": 442, "ui": 443, "yaml": 444, "shift": 445, "security_polici": 446, "act": 447, "incompat": 448, "goe": 449, "saniti": 450, "send_prompt": 451, "purpos": 452, "signific": 453, "fulli": 454, "utf": 455, "transmit": 456, "160": 457, "did": 458, "hug": 459, "model_picker_dialog": 460, "react": 461, "resourc": 462, "adjust": 463, "ifram": 464, "can": 465, "failur": 466, "768px": 467, "sanit": 468, "guid": 469, "logic": 470, "red": 471, "account": 472, "keyboard": 473, "work": 474, "click_exampl": 475, "obj": 476, "demo": 477, "generat": 478, "multi_page_nav": 479, "experi": 480, "create_wsgi_app": 481, "price": 482, "doc": 483, "autom": 484, "success": 485, "tosurl": 486, "it": 487, "virtual": 488, "starter_kit": 489, "polic": 490, "toggl": 491, "point": 492, "640": 493, "datepick": 494, "display_messag": 495, "unnecessarili": 496, "filter": 497, "px": 498, "form": 499, "checkboxindeterminatechangeev": 500, "offset": 501, "localhost": 502, "encrypt": 503, "howev": 504, "verifi": 505, "dist": 506, "decod": 507, "structur": 508, "cdns": 509, "delight": 510, "content_checkbox": 511, "button_click": 512, "tradit": 513, "allowed_script_src": 514, "create_engin": 515, "ps1": 516, "becom": 517, "ram": 518, "repres": 519, "manual_sc": 520, "gcp": 521, "detect": 522, "chat_sess": 523, "improv": 524, "simplest": 525, "involv": 526, "bottleneck": 527, "chat_input": 528, "larg": 529, "remov": 530, "debugg": 531, "screen": 532, "thalnerkar": 533, "__component__": 534, "gemini_1_5_flash": 535, "best": 536, "card_act": 537, "handler": 538, "horizont": 539, "gemini": 540, "named_slot": 541, "semant": 542, "spec": 543, "on_auth_chang": 544, "5px": 545, "5678": 546, "suitabl": 547, "menu_width": 548, "downsid": 549, "update_st": 550, "680px": 551, "mesop": 552, "framework": 553, "src": 554, "db": 555, "both": 556, "actual": 557, "across": 558, "content_compon": 559, "high": 560, "limit": 561, "pleas": 562, "box_shadow": 563, "stabl": 564, "var": 565, "content_slide_toggl": 566, "written": 567, "area": 568, "panda": 569, "radio": 570, "ve": 571, "concurr": 572, "1fr": 573, "disabl": 574, "elif": 575, "congrat": 576, "battl": 577, "client": 578, "namespac": 579, "immut": 580, "pyproject": 581, "callsit": 582, "rich": 583, "ever": 584, "now": 585, "font_weight": 586, "standard": 587, "indic": 588, "0000001f": 589, "adc": 590, "servic": 591, "md": 592, "slotclass": 593, "rank": 594, "strong": 595, "justify_cont": 596, "server": 597, "load": 598, "ml": 599, "viewer": 600, "how": 601, "whether": 602, "sensit": 603, "jsdelivr": 604, "ask": 605, "umd": 606, "environ": 607, "detection_compon": 608, "factori": 609, "worker": 610, "video": 611, "pretti": 612, "respect": 613, "devic": 614, "solut": 615, "our": 616, "api_key": 617, "titl": 618, "port": 619, "smaller": 620, "set_claude_api_key": 621, "switch_model": 622, "sort": 623, "agnost": 624, "besid": 625, "curv": 626, "here": 627, "call": 628, "leverag": 629, "kufpisujrw": 630, "swap": 631, "consol": 632, "llm_respons": 633, "expertis": 634, "writeabl": 635, "localroot": 636, "even": 637, "unselect": 638, "closur": 639, "streamlit": 640, "2f": 641, "dangerously_disable_trusted_typ": 642, "on_load_gener": 643, "view": 644, "outlin": 645, "anywher": 646, "each": 647, "repeat": 648, "minimum": 649, "extract": 650, "conversation_pag": 651, "1px": 652, "kit": 653, "earli": 654, "slider": 655, "mesop_state_sess": 656, "_zr64fycojgbcdqbjpla": 657, "stateclass": 658, "selectopenedchangeev": 659, "classif": 660, "readm": 661, "autocompleteopt": 662, "number": 663, "callback": 664, "easi": 665, "html": 666, "mdn": 667, "tmp": 668, "recommend": 669, "2767": 670, "outer": 671, "generativeai": 672, "width": 673, "smbah5leri": 674, "lower": 675, "problemat": 676, "lot": 677, "respons": 678, "mesop_websockets_en": 679, "ci": 680, "share": 681, "quiet": 682, "2px": 683, "png": 684, "prevent": 685, "prebuilt": 686, "javascript": 687, "charset": 688, "duochat": 689, "playwright": 690, "max": 691, "theme_bright": 692, "max_token": 693, "baseurl": 694, "boilerpl": 695, "inter": 696, "clean": 697, "program": 698, "counter": 699, "value1": 700, "select_demo": 701, "insid": 702, "conform": 703, "inadvert": 704, "autocompleteoptiongroup": 705, "dswharshit": 706, "interfac": 707, "rerun": 708, "align": 709, "primary_key": 710, "compar": 711, "correspond": 712, "wrapper": 713, "pageast": 714, "elimin": 715, "tutori": 716, "budget": 717, "tell": 718, "websocket": 719, "label": 720, "gcp_project": 721, "more": 722, "proper": 723, "gray": 724, "column": 725, "box": 726, "consist": 727, "home": 728, "tool": 729, "genai": 730, "togeth": 731, "quick": 732, "scroll": 733, "grid": 734, "beginn": 735, "kind": 736, "june": 737, "claud": 738, "mesop_concurrent_updates_en": 739, "primarili": 740, "appropri": 741, "itself": 742, "come": 743, "nullabl": 744, "https": 745, "potenti": 746, "defined__": 747, "replica": 748, "categori": 749, "adopt": 750, "galleri": 751, "scalabl": 752, "sleek": 753, "ecosystem": 754, "option": 755, "reset": 756, "127": 757, "trick": 758, "on_chang": 759, "examples_row": 760, "mistak": 761, "enabl": 762, "argument": 763, "instant": 764, "reload": 765, "code_demo": 766, "templat": 767, "would": 768, "behavior": 769, "ultim": 770, "explor": 771, "innerhtml": 772, "parti": 773, "colab_run": 774, "engin": 775, "cell": 776, "input_valu": 777, "800": 778, "languag": 779, "medium": 780, "amount": 781, "plugin": 782, "nest": 783, "cd": 784, "gemini_1_5_pro": 785, "entri": 786, "starter": 787, "minor": 788, "user": 789, "flow": 790, "edgy0afg6u": 791, "again": 792, "wsgi": 793, "town": 794, "convers": 795, "element": 796, "confid": 797, "exampl": 798, "under": 799, "fallback": 800, "minim": 801, "affin": 802, "hub": 803, "care": 804, "deal": 805, "busi": 806, "frontend": 807, "web_compon": 808, "valuabl": 809, "anoth": 810, "enum": 811, "too": 812, "flexbox": 813, "all_valu": 814, "out": 815, "feel": 816, "whichev": 817, "typic": 818, "buttontogglechangeev": 819, "get": 820, "mention": 821, "v2": 822, "roundtrip": 823, "gyroscop": 824, "font": 825, "longer": 826, "uploadedfil": 827, "word": 828, "though": 829, "claude_3_5_sonnet": 830, "en": 831, "retain": 832, "fewer": 833, "treat": 834, "on_input": 835, "overview": 836, "line": 837, "base": 838, "light": 839, "session": 840, "cloudsql": 841, "keyerror": 842, "serial": 843, "consider": 844, "runtime_config": 845, "don": 846, "imagin": 847, "exc": 848, "v1": 849, "miss": 850, "buttontogglebutton": 851, "sdk": 852, "redact": 853, "startswith": 854, "sidenav": 855, "target": 856, "dev": 857, "pin": 858, "relat": 859, "introduc": 860, "pick": 861, "mesop_app_base_path": 862, "sequenc": 863, "minut": 864, "serializ": 865, "accur": 866, "5etfw": 867, "215px": 868, "aim": 869, "uniqu": 870, "env": 871, "automat": 872, "hf": 873, "chunk": 874, "eventu": 875, "separ": 876, "unhandl": 877, "long": 878, "print": 879, "be": 880, "fals": 881, "scratch": 882, "github": 883, "those": 884, "readi": 885, "philosophi": 886, "combin": 887, "viewport_s": 888, "modeldialogst": 889, "info": 890, "table_nam": 891, "detect_object": 892, "bunch": 893, "manag": 894, "card_head": 895, "justify_item": 896, "securitypolici": 897, "join": 898, "clear": 899, "review": 900, "box_siz": 901, "button_toggl": 902, "leak": 903, "branch": 904, "upload": 905, "wsgi_app": 906, "becaus": 907, "programmingerror": 908, "app": 909, "date_range_pick": 910, "test": 911, "fuss": 912, "configure_gemini": 913, "20": 914, "gunicorn": 915, "base64": 916, "polici": 917, "endpoint": 918, "allowfullscreen": 919, "boost": 920, "product": 921, "ident": 922, "wide": 923, "coupl": 924, "txt": 925, "95": 926, "away": 927, "rais": 928, "http": 929, "interoper": 930, "parent": 931, "slidervaluechangeev": 932, "sandbox": 933, "render": 934, "param": 935, "data_model": 936, "gradio": 937, "banana": 938, "co": 939, "disallow": 940, "command": 941, "save": 942, "favicon": 943, "bat": 944, "bucket": 945, "format": 946, "configur": 947, "mdash": 948, "page1": 949, "sure": 950, "link": 951, "captur": 952, "pass": 953, "choos": 954, "max_output_token": 955, "variable_nam": 956, "altern": 957, "markdown": 958, "someth": 959, "from": 960, "conveni": 961, "set_theme_dens": 962, "eas": 963, "10": 964, "found": 965, "expans": 966, "optim": 967, "tier": 968, "field": 969, "attempt": 970, "simultan": 971, "just": 972, "nav_compon": 973, "correct": 974, "confirm": 975, "dsl": 976, "mesop_state_session_backend_file_base_dir": 977, "purpl": 978, "onto": 979, "built": 980, "lose": 981, "friction": 982, "letter_spac": 983, "difficult": 984, "section": 985, "help": 986, "trustedhtml": 987, "access": 988, "folder": 989, "general": 990, "congratul": 991, "error": 992, "pros": 993, "defin": 994, "async": 995, "gap": 996, "need": 997, "fetch": 998, "soon": 999, "moment": 1000, "aj4rqzs2mmwvxfo": 1001, "rare": 1002, "ren": 1003, "project": 1004, "val": 1005, "relax": 1006, "technolog": 1007, "perform": 1008, "accommod": 1009, "rapid": 1010, "display_convers": 1011, "activ": 1012, "native_textarea": 1013, "deprec": 1014, "colorfrom": 1015, "let": 1016, "famili": 1017, "css": 1018, "tend": 1019, "doubl": 1020, "index": 1021, "finish": 1022, "metadata": 1023, "avoid": 1024, "explain": 1025, "16": 1026, "manner": 1027, "advanc": 1028, "remoteroot": 1029, "hamburg": 1030, "harshit": 1031, "request": 1032, "defer": 1033, "runtim": 1034, "context": 1035, "gcloud": 1036, "allows_ifram": 1037, "absolut": 1038, "grid_template_row": 1039, "newer": 1040, "experiment": 1041, "dom": 1042, "recogn": 1043, "accumul": 1044, "below": 1045, "add_query_param": 1046, "strive": 1047, "strength": 1048, "use": 1049, "chrome": 1050, "until": 1051, "unnecessari": 1052, "question": 1053, "say": 1054, "operating_system": 1055, "selected_model": 1056, "produc": 1057, "collect": 1058, "integr": 1059, "prompt": 1060, "slow": 1061, "download": 1062, "flex_grow": 1063, "compat": 1064, "onc": 1065, "close_model_picker_dialog": 1066, "icon": 1067, "line_height": 1068, "admin": 1069, "overflow_x": 1070, "syntax": 1071, "basic": 1072, "effortless": 1073, "specif": 1074, "go": 1075, "io": 1076, "gh": 1077, "64": 1078, "twsrc": 1079, "webserv": 1080, "expos": 1081, "debug": 1082, "typescript": 1083, "shown": 1084, "start": 1085, "person_dict": 1086, "rather": 1087, "bob": 1088, "llm": 1089, "them": 1090, "bar": 1091, "code": 1092, "flex": 1093, "didn": 1094, "prod_bundl": 1095, "impos": 1096, "sourc": 1097, "acceleromet": 1098, "where": 1099, "header": 1100, "decoupl": 1101, "inputblurev": 1102, "launch": 1103, "huggingfac": 1104, "100": 1105, "media": 1106, "app_port": 1107, "bill": 1108, "emit": 1109, "less": 1110, "svelt": 1111, "slowli": 1112, "23": 1113, "about": 1114, "colab": 1115, "attach": 1116, "wrestl": 1117, "left": 1118, "assign": 1119, "unfamiliar": 1120, "suffici": 1121, "refin": 1122, "good": 1123, "everyth": 1124, "complement": 1125, "web": 1126, "person": 1127, "resist": 1128, "abil": 1129, "complet": 1130, "simplic": 1131, "describ": 1132, "construct": 1133, "note": 1134, "default_factori": 1135, "infrastructur": 1136, "bg": 1137, "signinsuccessurl": 1138, "while": 1139, "1798673386425786724": 1140, "possibl": 1141, "top_p": 1142, "fault": 1143, "param_to_delet": 1144, "inputev": 1145, "violat": 1146, "descript": 1147, "net": 1148, "rest": 1149, "group": 1150, "termin": 1151, "attract": 1152, "fraction": 1153, "progress": 1154, "googleapi": 1155, "releas": 1156, "uploadev": 1157, "veloc": 1158, "within": 1159, "issu": 1160, "mutabl": 1161, "kw_on": 1162, "border": 1163, "model_messag": 1164, "static": 1165, "follow": 1166, "between": 1167, "gave": 1168, "otherwis": 1169, "dynapubow3aft47i": 1170, "readabl": 1171, "page_b": 1172, "blob": 1173, "re": 1174, "typeerror": 1175, "subject": 1176, "pagebst": 1177, "encourag": 1178, "accept": 1179, "prod": 1180, "expand": 1181, "mesop_state_session_backend_sql_t": 1182, "add": 1183, "dict": 1184, "stale": 1185, "16gb": 1186, "vcpu": 1187, "1800557173073691000": 1188, "webev": 1189, "scale": 1190, "comput": 1191, "cdn": 1192, "100vh": 1193, "on_image_upload": 1194, "past": 1195, "log": 1196, "privaci": 1197, "pad": 1198, "lit": 1199, "must": 1200, "charact": 1201, "dynam": 1202, "goal": 1203, "race": 1204, "other": 1205, "so": 1206, "sqlite3": 1207, "gentl": 1208, "own": 1209, "unsaf": 1210, "listen": 1211, "encod": 1212, "claude_api_key": 1213, "i18n": 1214, "dozen": 1215, "date": 1216, "complic": 1217, "world": 1218, "inputenterev": 1219, "entrypoint": 1220, "ai": 1221, "fail": 1222, "next": 1223, "unfortun": 1224, "getusermedia": 1225, "addit": 1226, "tri": 1227, "8080": 1228, "enterpris": 1229, "develop": 1230, "deep": 1231, "global": 1232, "framebord": 1233, "bodi": 1234, "custom": 1235, "page_a": 1236, "api": 1237, "protocol": 1238, "communic": 1239, "privileg": 1240, "resiz": 1241, "move": 1242, "answer": 1243, "wrong": 1244, "11": 1245, "deeper": 1246, "differenti": 1247, "enter": 1248, "get_al": 1249, "accord": 1250, "clickjack": 1251, "referrerpolici": 1252, "wait": 1253, "tupl": 1254, "lightweight": 1255, "on_load": 1256, "border_radius": 1257, "counter_compon": 1258, "reusabl": 1259, "delet": 1260, "flex_direct": 1261, "essenti": 1262, "debugpi": 1263, "_not_": 1264, "f0f0f0": 1265, "statement": 1266, "memory_gb": 1267, "tooltip": 1268, "network": 1269, "sleep": 1270, "some_cont": 1271, "firebase_auth": 1272, "mesop_layout_colab": 1273, "email": 1274, "focus": 1275, "abc": 1276, "ani": 1277, "overridden": 1278, "home_pag": 1279, "maintain": 1280, "welcom": 1281, "click": 1282, "white": 1283, "cryptic": 1284, "mesop_static_fold": 1285, "680": 1286, "what": 1287, "viewport": 1288, "verbos": 1289, "scaffold": 1290, "stage": 1291, "architectur": 1292, "occasion": 1293, "implement": 1294, "bind": 1295, "00000024": 1296, "outsid": 1297, "inner": 1298, "theme": 1299, "s9ag_yndl0m": 1300, "cpu": 1301, "contact": 1302, "href": 1303, "anti": 1304, "tab": 1305, "unopinion": 1306, "object_detector": 1307, "self": 1308, "payload": 1309, "firebase_auth_compon": 1310, "omit": 1311, "idea": 1312, "lifetim": 1313, "varieti": 1314, "card_cont": 1315, "hl_line": 1316, "local": 1317, "vs": 1318, "singl": 1319, "been": 1320, "children": 1321, "tailwind": 1322, "evolv": 1323, "40px": 1324, "safest": 1325, "etc": 1326, "streamlin": 1327, "excel": 1328, "toggle_them": 1329, "disk_size_gb": 1330, "start_chat": 1331, "tabl": 1332, "confidenti": 1333, "imper": 1334, "file": 1335, "progressbaranimationendev": 1336, "remind": 1337, "appl": 1338, "ttl": 1339, "frame": 1340, "open": 1341, "address": 1342, "wght": 1343, "goodby": 1344, "given": 1345, "picker": 1346, "machin": 1347, "plan": 1348, "subtre": 1349, "lost": 1350, "forth": 1351, "valu": 1352, "inject": 1353, "later": 1354, "layoutslot": 1355, "top": 1356, "tedious": 1357, "current": 1358, "toml": 1359, "consum": 1360, "height": 1361, "chang": 1362, "new": 1363, "pro": 1364, "initial_valu": 1365, "serious": 1366, "featur": 1367, "small": 1368, "url": 1369, "dialog_st": 1370, "intend": 1371, "allow": 1372, "intermedi": 1373, "login": 1374, "off": 1375, "content_button": 1376, "most": 1377, "done": 1378, "alreadi": 1379, "docker": 1380, "through": 1381, "storag": 1382, "includ": 1383, "interact": 1384, "like": 1385, "incom": 1386, "900": 1387, "traffic": 1388, "e7f2ff": 1389, "status": 1390, "hidden": 1391, "key": 1392, "anchor": 1393, "dialog_act": 1394, "480": 1395, "navigate_hom": 1396, "grant": 1397, "second": 1398, "resolv": 1399, "extens": 1400, "version": 1401, "problem": 1402, "compromis": 1403, "symbol": 1404, "expect": 1405, "dkvt0rboqumapk5d": 1406, "0003": 1407, "blue": 1408, "2rem": 1409, "models_px": 1410, "variabl": 1411, "stringent": 1412, "place": 1413, "licens": 1414, "low": 1415, "clipboard": 1416, "hit": 1417, "devtool": 1418, "black": 1419, "sh": 1420, "fruit": 1421, "cli": 1422, "mesop_static_url_path": 1423, "decor": 1424, "date_pick": 1425, "platform": 1426, "setattr": 1427, "permiss": 1428, "summari": 1429, "give": 1430, "similar": 1431, "your": 1432, "init": 1433, "zi1dngoryho": 1434, "expiresat": 1435, "spinner": 1436, "memori": 1437, "object": 1438, "achiev": 1439, "ubuntu22": 1440, "either": 1441, "html_demo": 1442, "checkbox": 1443, "autocompleteenterev": 1444, "back": 1445, "player": 1446, "overflow_i": 1447, "opendemogalleryinnewtab": 1448, "instanc": 1449, "hide": 1450, "regular": 1451, "clariti": 1452, "jupyt": 1453, "calc": 1454, "cmd": 1455, "component_": 1456, "side": 1457, "len": 1458, "trust": 1459, "which": 1460, "absenc": 1461, "autocomplet": 1462, "dictionari": 1463, "reli": 1464, "matplotlib": 1465, "privacypolicyurl": 1466, "content__inn": 1467, "bi": 1468, "particular": 1469, "top_k": 1470, "avail": 1471, "annot": 1472, "alic": 1473, "troubleshoot": 1474, "largebinari": 1475, "migrat": 1476, "increas": 1477, "path": 1478, "respond": 1479, "script": 1480, "have": 1481, "robust": 1482, "term": 1483, "understand": 1484, "mutat": 1485, "dataclass": 1486, "dump": 1487, "identitytoolkit": 1488, "multi": 1489, "anatomi": 1490, "oftentim": 1491, "split": 1492, "input": 1493, "3d3929": 1494, "plenti": 1495, "control": 1496, "return": 1497, "value2": 1498, "runtime_vers": 1499, "ensur": 1500, "straightforward": 1501, "pip": 1502, "enhanc": 1503, "csp": 1504, "time": 1505, "ffffff": 1506, "approach": 1507, "trustedscripturl": 1508, "clone": 1509, "elem": 1510, "component_help": 1511, "send_prompt_pro": 1512, "typeset": 1513, "run": 1514, "substr": 1515, "disk": 1516, "mesop_web_components_http_cache_key": 1517, "progress_bar": 1518, "sorri": 1519, "action": 1520, "disclaim": 1521, "complex": 1522, "microphon": 1523, "cancel": 1524, "state": 1525, "screenshot": 1526, "background": 1527, "uncom": 1528, "comprehens": 1529, "default": 1530, "troubl": 1531, "browser": 1532, "last": 1533, "read": 1534, "mutableclass": 1535, "choic": 1536, "standalon": 1537, "ttls": 1538, "research": 1539, "abl": 1540, "refer": 1541, "1028": 1542, "hashtag": 1543, "old": 1544, "text": 1545, "domain": 1546, "usual": 1547, "uri": 1548, "traceback": 1549, "footer": 1550, "daterangepickerchangeev": 1551, "hint": 1552, "order": 1553, "query_param": 1554, "repo": 1555, "datapick": 1556, "invalid": 1557, "pictur": 1558, "ipython": 1559, "click_navigate_button": 1560, "may": 1561, "proto": 1562, "new_param": 1563, "color": 1564, "root_box_styl": 1565, "dockerfil": 1566, "__native__": 1567, "empti": 1568, "prefer": 1569, "face": 1570, "receiv": 1571, "mesop_http_cache_js_bundl": 1572, "support": 1573, "hello": 1574, "si": 1575, "higher": 1576, "in": 1577, "direct": 1578, "front": 1579, "restart": 1580, "ad": 1581, "vast": 1582, "python": 1583, "firebaseconfig": 1584, "24": 1585, "text_to_imag": 1586, "loadev": 1587, "multipl": 1588, "compos": 1589, "del": 1590, "nonc": 1591, "could": 1592, "serv": 1593, "hate": 1594, "abstract": 1595, "exist": 1596, "liner": 1597, "50": 1598, "toler": 1599, "part": 1600, "unifi": 1601, "tree": 1602, "materi": 1603, "quota": 1604, "untrust": 1605, "packag": 1606, "margin": 1607, "match": 1608, "ico": 1609, "pic": 1610, "initi": 1611, "nativ": 1612, "execut": 1613, "danger": 1614, "shadow": 1615, "ide": 1616, "suit": 1617, "nestedst": 1618, "properti": 1619, "messag": 1620, "css2": 1621, "autocompleteselectionchangeev": 1622, "credenti": 1623, "mesopdeveloperexcept": 1624, "expansionpaneltoggleev": 1625, "mechan": 1626, "sent": 1627, "inspir": 1628, "callabl": 1629, "315": 1630, "remot": 1631, "blur": 1632, "principl": 1633, "modifi": 1634, "filenam": 1635, "workspacefold": 1636, "commit": 1637, "amongst": 1638, "queri": 1639, "repeated_param": 1640, "8192": 1641, "generativemodel": 1642, "cursor": 1643, "creat": 1644, "belief": 1645, "sometim": 1646, "moder": 1647, "linux": 1648, "origin": 1649, "bin": 1650, "granular": 1651, "put": 1652, "anyth": 1653, "dive": 1654, "intuit": 1655, "latest": 1656, "themevar": 1657, "retriev": 1658, "youtub": 1659, "headlin": 1660, "subdomain": 1661, "minimalist": 1662, "www": 1663, "requir": 1664, "explicit": 1665, "ambigu": 1666, "name": 1667, "counter_component_app": 1668, "hot": 1669, "authent": 1670, "applic": 1671, "updat": 1672, "entir": 1673, "binari": 1674, "variat": 1675, "appli": 1676, "divid": 1677, "fastapi": 1678, "crux": 1679, "7anchay": 1680, "bring": 1681, "model_nam": 1682, "befor": 1683, "mesop_prod_unredacted_error": 1684, "specifi": 1685, "free": 1686, "risk": 1687, "js": 1688, "20240229": 1689, "idiomat": 1690, "visual": 1691, "powershel": 1692, "compatibilti": 1693, "keep": 1694, "critic": 1695, "few": 1696, "_or_": 1697, "_ondecr": 1698, "bottom": 1699, "prototyp": 1700, "clickev": 1701, "wrap": 1702, "me": 1703, "slide_toggl": 1704, "flash": 1705, "asset": 1706, "mesop_state_session_backend_firestore_collect": 1707, "scroll_into_view": 1708, "demonstr": 1709, "fluid": 1710, "type": 1711, "firebaseui": 1712, "async_await": 1713, "plot": 1714, "sanchay": 1715, "congress": 1716, "is_model_picker_dialog_open": 1717, "secur": 1718, "token": 1719, "__user": 1720, "requisit": 1721, "deploy": 1722, "sonnet": 1723, "subtl": 1724, "team": 1725, "spin": 1726, "fit": 1727, "asyncio": 1728, "show_menu_button": 1729, "sequenti": 1730, "set_page_titl": 1731, "jumpstart": 1732, "xhr": 1733, "vertic": 1734, "block": 1735, "core": 1736, "known": 1737, "util": 1738, "reduc": 1739, "futur": 1740, "list": 1741, "three": 1742, "auto": 1743, "goto": 1744, "among": 1745, "densiti": 1746, "viewabl": 1747, "wire": 1748, "num": 1749, "isol": 1750, "couldn": 1751, "cross": 1752, "srcdoc": 1753, "setup": 1754, "colorto": 1755, "content": 1756, "defens": 1757, "symmetr": 1758, "depend": 1759, "effici": 1760, "level": 1761, "databas": 1762, "inspect": 1763, "pointer": 1764, "histori": 1765, "250px": 1766, "import": 1767, "bash": 1768, "although": 1769, "sidebar": 1770, "current_input_valu": 1771, "align_item": 1772, "dispatchev": 1773, "step": 1774, "thing": 1775, "third": 1776, "differ": 1777, "vscode": 1778, "hood": 1779, "string": 1780, "unit": 1781, "confirm_model_picker_dialog": 1782, "sign": 1783, "veri": 1784, "quickstart": 1785, "none": 1786, "output": 1787, "font_famili": 1788, "communiti": 1789, "paradigm": 1790, "dens": 1791, "srv": 1792, "ll": 1793, "progress_spinn": 1794, "on_blur": 1795, "highlight": 1796, "2fr": 1797, "39": 1798, "milk": 1799, "plumb": 1800, "search": 1801, "were": 1802, "focus_compon": 1803, "initial_input_valu": 1804, "do": 1805, "role": 1806, "walk": 1807, "els": 1808, "apach": 1809, "made": 1810, "notic": 1811, "32px": 1812, "offer": 1813, "send_messag": 1814, "pattern": 1815, "center": 1816, "store": 1817, "space": 1818, "warn": 1819, "over": 1820, "xlr8harder": 1821, "copi": 1822, "min": 1823, "wildcard": 1824, "text_stream": 1825, "look": 1826, "associ": 1827, "instruct": 1828, "page": 1829, "rememb": 1830, "dedic": 1831, "right": 1832, "desktop": 1833, "still": 1834, "straight": 1835, "select_menu_key": 1836, "earlier": 1837, "radiochangeev": 1838, "autosc": 1839}
gen/default__vector_store.json ADDED
The diff for this file is too large to render. See raw diff
 
gen/docstore.json ADDED
The diff for this file is too large to render. See raw diff
 
gen/graph_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"graph_dict": {}}
gen/image__vector_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"embedding_dict": {}, "text_id_to_ref_doc_id": {}, "metadata_dict": {}}
gen/index_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"index_store/data": {"509dd5c5-1d17-4e38-b49b-b25126632116": {"__type__": "vector_store", "__data__": "{\"index_id\": \"509dd5c5-1d17-4e38-b49b-b25126632116\", \"summary\": null, \"nodes_dict\": {\"d1b999c3-825e-4433-a8b6-82fa5f1e006b\": \"d1b999c3-825e-4433-a8b6-82fa5f1e006b\", \"31979cc6-9f2d-4bfc-8067-9f7ee99cb072\": \"31979cc6-9f2d-4bfc-8067-9f7ee99cb072\", \"9234f842-c4b8-4ac0-a8e2-d5e6eaedb241\": \"9234f842-c4b8-4ac0-a8e2-d5e6eaedb241\", \"fcbc438c-6904-4c05-a1d2-594ea40e3afb\": \"fcbc438c-6904-4c05-a1d2-594ea40e3afb\", \"e7a5048d-191f-4c77-91f8-bcaa4699d4e2\": \"e7a5048d-191f-4c77-91f8-bcaa4699d4e2\", \"66493ed8-5a28-4d45-a106-d7ee8f67b301\": \"66493ed8-5a28-4d45-a106-d7ee8f67b301\", \"98fe9479-478b-47ce-b7a5-6fd5307564c5\": \"98fe9479-478b-47ce-b7a5-6fd5307564c5\", \"5a98b526-a854-4ccb-b6a5-95a0529882a2\": \"5a98b526-a854-4ccb-b6a5-95a0529882a2\", \"d6a81690-7629-4d93-85bc-9581320d43a8\": \"d6a81690-7629-4d93-85bc-9581320d43a8\", \"c5fbcdf3-320a-42e4-8d24-23a3f9e884f8\": \"c5fbcdf3-320a-42e4-8d24-23a3f9e884f8\", \"df0f6ccb-4803-426c-bc01-18d9b64fb292\": \"df0f6ccb-4803-426c-bc01-18d9b64fb292\", \"e760b486-7545-4cad-9bb4-267a899e5478\": \"e760b486-7545-4cad-9bb4-267a899e5478\", \"6e4c4088-d652-4558-a5cc-bf5724d19a71\": \"6e4c4088-d652-4558-a5cc-bf5724d19a71\", \"bbeb73e4-6eba-44c9-a5f9-4346f71f5538\": \"bbeb73e4-6eba-44c9-a5f9-4346f71f5538\", \"1c9473c2-917d-4415-acb0-e6f188301f3a\": \"1c9473c2-917d-4415-acb0-e6f188301f3a\", \"3f6411fc-7708-4dbb-9a3d-43b083bddf33\": \"3f6411fc-7708-4dbb-9a3d-43b083bddf33\", \"351153ef-2ca2-4884-9bf5-fca022531c63\": \"351153ef-2ca2-4884-9bf5-fca022531c63\", \"7413ce72-5418-47bd-8fdf-f2dc1fc0b121\": \"7413ce72-5418-47bd-8fdf-f2dc1fc0b121\", \"1babdb2e-a658-446a-82db-434c61a5b43f\": \"1babdb2e-a658-446a-82db-434c61a5b43f\", \"ab1373d5-2fa0-4b85-a3ec-2c5ed3c05b5e\": \"ab1373d5-2fa0-4b85-a3ec-2c5ed3c05b5e\", \"4357a846-8181-4368-a41a-5c1a98d05d3b\": \"4357a846-8181-4368-a41a-5c1a98d05d3b\", \"271282ab-3029-4b7c-99be-d0a452c724e3\": \"271282ab-3029-4b7c-99be-d0a452c724e3\", \"8f5e484e-d07d-45ff-9c57-c1be014bd8e5\": \"8f5e484e-d07d-45ff-9c57-c1be014bd8e5\", \"25d1c3dd-d93a-4027-a631-16b505da00bc\": \"25d1c3dd-d93a-4027-a631-16b505da00bc\", \"3e419b2f-75db-4b3a-8206-5ad38e56c80e\": \"3e419b2f-75db-4b3a-8206-5ad38e56c80e\", \"769fd3d0-8fa2-4fdd-ba70-587a8de9c049\": \"769fd3d0-8fa2-4fdd-ba70-587a8de9c049\", \"34d46fb5-94b8-4d32-adea-f7de48f43042\": \"34d46fb5-94b8-4d32-adea-f7de48f43042\", \"c72be357-cdc8-40cc-a764-8e45e6c9937b\": \"c72be357-cdc8-40cc-a764-8e45e6c9937b\", \"f4592024-9c22-42ca-8bd3-ec3b01a7e246\": \"f4592024-9c22-42ca-8bd3-ec3b01a7e246\", \"62858466-296f-4cb4-af09-b293adf10cd4\": \"62858466-296f-4cb4-af09-b293adf10cd4\", \"f3a5dcf9-261e-42ae-a910-cc85d7a7062b\": \"f3a5dcf9-261e-42ae-a910-cc85d7a7062b\", \"b4954df6-d612-4236-9e23-5b27c6b2e21d\": \"b4954df6-d612-4236-9e23-5b27c6b2e21d\", \"3ff1f4bf-6636-4d82-b3d1-daefb46d1ba5\": \"3ff1f4bf-6636-4d82-b3d1-daefb46d1ba5\", \"76ea1926-bdb4-418c-a256-a51b737f6282\": \"76ea1926-bdb4-418c-a256-a51b737f6282\", \"02de3759-f92f-4041-83c1-1141c866054f\": \"02de3759-f92f-4041-83c1-1141c866054f\", \"f8657e25-14d9-4bae-8e72-f0c95560a2b6\": \"f8657e25-14d9-4bae-8e72-f0c95560a2b6\", \"4957b869-eb6d-4c7a-bf24-d3a4aaa2cd2d\": \"4957b869-eb6d-4c7a-bf24-d3a4aaa2cd2d\", \"7f3947f4-24f1-4afb-a009-f9b0450c694d\": \"7f3947f4-24f1-4afb-a009-f9b0450c694d\", \"c9b5c411-1195-4808-9990-f046f68631a8\": \"c9b5c411-1195-4808-9990-f046f68631a8\", \"acc649f1-a518-4f30-a13a-816957163629\": \"acc649f1-a518-4f30-a13a-816957163629\", \"03025c8f-5d36-4fbe-aace-fb5c834556eb\": \"03025c8f-5d36-4fbe-aace-fb5c834556eb\", \"59e3e95c-8f84-41b2-b9ad-59bbcab443eb\": \"59e3e95c-8f84-41b2-b9ad-59bbcab443eb\", \"ec039a6a-ed47-47a1-a587-c1938f83a93c\": \"ec039a6a-ed47-47a1-a587-c1938f83a93c\", \"d32bf1f8-81f9-4d21-8d9d-5ce114d3da33\": \"d32bf1f8-81f9-4d21-8d9d-5ce114d3da33\", \"e49461e7-7a1d-4832-bd95-d85a462d8970\": \"e49461e7-7a1d-4832-bd95-d85a462d8970\", \"19184604-2c6d-484d-b4a0-42f27d5da3e0\": \"19184604-2c6d-484d-b4a0-42f27d5da3e0\", \"f460652b-2bc0-4acc-a795-abcb4e145ea7\": \"f460652b-2bc0-4acc-a795-abcb4e145ea7\", \"25d7c008-1a05-4b52-8452-c569e7113239\": \"25d7c008-1a05-4b52-8452-c569e7113239\", \"c7b176cc-867b-4105-934e-0bc50aad6ac7\": \"c7b176cc-867b-4105-934e-0bc50aad6ac7\", \"ad05765e-523a-4aac-857f-bea5e5259a66\": \"ad05765e-523a-4aac-857f-bea5e5259a66\", \"b79eca92-77c3-4423-a7aa-62c137fd4f77\": \"b79eca92-77c3-4423-a7aa-62c137fd4f77\", \"332f24e3-43da-4a2d-80ad-e0e0fbe4e8a6\": \"332f24e3-43da-4a2d-80ad-e0e0fbe4e8a6\", \"a2cb937a-544c-4d91-b702-7126bf94c027\": \"a2cb937a-544c-4d91-b702-7126bf94c027\", \"06c36707-f38a-4044-841e-2c49169d5e1e\": \"06c36707-f38a-4044-841e-2c49169d5e1e\", \"47f43879-c6cc-4f4e-b350-b4ee9b858cbd\": \"47f43879-c6cc-4f4e-b350-b4ee9b858cbd\", \"828b5496-b661-4882-9bbe-fc8637b5a951\": \"828b5496-b661-4882-9bbe-fc8637b5a951\", \"665f9b98-fd73-4f50-a9d7-9c0f1d2778ca\": \"665f9b98-fd73-4f50-a9d7-9c0f1d2778ca\", \"fef68ecc-f92e-4a6b-b902-bb006c3e64f7\": \"fef68ecc-f92e-4a6b-b902-bb006c3e64f7\", \"b9c504b6-a238-4e09-8cfc-2fdafc260587\": \"b9c504b6-a238-4e09-8cfc-2fdafc260587\", \"84e3c48f-aead-4c1f-9c23-c5e90aad0097\": \"84e3c48f-aead-4c1f-9c23-c5e90aad0097\", \"d4e19451-76e6-4a24-b1ee-c3be04520124\": \"d4e19451-76e6-4a24-b1ee-c3be04520124\", \"6fb91212-4634-4a43-86b6-1599e84af74b\": \"6fb91212-4634-4a43-86b6-1599e84af74b\", \"eca35bbb-210a-416e-9a57-71dd0f2737cc\": \"eca35bbb-210a-416e-9a57-71dd0f2737cc\", \"4d700e44-39bf-4b45-8b95-f150250d33f9\": \"4d700e44-39bf-4b45-8b95-f150250d33f9\", \"9e8ecf94-b1b1-405f-b866-66285754acdb\": \"9e8ecf94-b1b1-405f-b866-66285754acdb\", \"d22b891e-f950-4e70-bffb-22b8365fb1d3\": \"d22b891e-f950-4e70-bffb-22b8365fb1d3\", \"01472ae7-515f-448b-871d-6a4de9dc659b\": \"01472ae7-515f-448b-871d-6a4de9dc659b\", \"dfb3a470-9276-452f-aa6c-b29d0174c128\": \"dfb3a470-9276-452f-aa6c-b29d0174c128\", \"7b283be4-15b7-45c0-ab2c-b51f19d024df\": \"7b283be4-15b7-45c0-ab2c-b51f19d024df\", \"8b7f3db0-73f0-49cb-9e36-e1dae03b1ad2\": \"8b7f3db0-73f0-49cb-9e36-e1dae03b1ad2\", \"e48210e5-abcd-4676-9ee7-127f2d3ceb59\": \"e48210e5-abcd-4676-9ee7-127f2d3ceb59\", \"0d45b84a-e630-4132-9d39-3dd8c1f05745\": \"0d45b84a-e630-4132-9d39-3dd8c1f05745\", \"0e9bce0f-bdd6-4492-97c3-7c3a269a7307\": \"0e9bce0f-bdd6-4492-97c3-7c3a269a7307\", \"8ce04116-576f-4416-9456-3da3acbfe5b0\": \"8ce04116-576f-4416-9456-3da3acbfe5b0\", \"47bc5970-4af5-4d79-be81-c653cc367460\": \"47bc5970-4af5-4d79-be81-c653cc367460\", \"f209df42-7d0c-47f2-973e-9be446560bad\": \"f209df42-7d0c-47f2-973e-9be446560bad\", \"c2dab9ec-f706-4454-9e1f-8bbf5c8b9916\": \"c2dab9ec-f706-4454-9e1f-8bbf5c8b9916\", \"fdc32d18-41e4-449b-aecf-aaf67a761c61\": \"fdc32d18-41e4-449b-aecf-aaf67a761c61\", \"f6af5b73-6beb-46c4-a056-1a727d3bb527\": \"f6af5b73-6beb-46c4-a056-1a727d3bb527\", \"7fd6bfc9-85a9-43d9-9b56-73ca43f44260\": \"7fd6bfc9-85a9-43d9-9b56-73ca43f44260\", \"95294581-cde7-454f-923b-3c815a6548cc\": \"95294581-cde7-454f-923b-3c815a6548cc\", \"83dcea1b-3bd7-470e-8f99-76d1b5d82364\": \"83dcea1b-3bd7-470e-8f99-76d1b5d82364\", \"a4fdb706-5193-4ae2-baaa-11ecf2e69c9a\": \"a4fdb706-5193-4ae2-baaa-11ecf2e69c9a\", \"011ea8cf-7b17-4f69-bec7-e03569a3dbae\": \"011ea8cf-7b17-4f69-bec7-e03569a3dbae\", \"9fea1f19-d89d-4403-a416-3cd130a565fd\": \"9fea1f19-d89d-4403-a416-3cd130a565fd\", \"d2513bfd-fa27-4a62-ac3d-8673e0e7f296\": \"d2513bfd-fa27-4a62-ac3d-8673e0e7f296\", \"b7d9e38d-36d0-4621-b1cd-94cae0022423\": \"b7d9e38d-36d0-4621-b1cd-94cae0022423\", \"ec2100f4-9a7f-4cb5-a12f-01bbc9b799fa\": \"ec2100f4-9a7f-4cb5-a12f-01bbc9b799fa\", \"6aad22cc-5f12-415a-b08d-4bf846087205\": \"6aad22cc-5f12-415a-b08d-4bf846087205\", \"489624a0-77e0-47ff-8e6f-5885fb989c11\": \"489624a0-77e0-47ff-8e6f-5885fb989c11\", \"863fef31-59a1-4e47-af62-45ae2d83ec55\": \"863fef31-59a1-4e47-af62-45ae2d83ec55\", \"4e5f3058-90e5-45a2-91b3-e1cf216c55bf\": \"4e5f3058-90e5-45a2-91b3-e1cf216c55bf\", \"81bf7847-e466-4368-99e4-d6b8e9ac8012\": \"81bf7847-e466-4368-99e4-d6b8e9ac8012\", \"d07425a6-baa1-4955-b989-2b898d6e38d8\": \"d07425a6-baa1-4955-b989-2b898d6e38d8\", \"2b947cc6-3884-4c3f-af00-8377a62510f1\": \"2b947cc6-3884-4c3f-af00-8377a62510f1\", \"539b0d7c-78ea-45c8-b9b6-b2c9a52ba40e\": \"539b0d7c-78ea-45c8-b9b6-b2c9a52ba40e\", \"164519b3-e0a4-404f-ac22-2ac2979ee541\": \"164519b3-e0a4-404f-ac22-2ac2979ee541\", \"eec36586-bf95-4942-9956-95f6dcb49931\": \"eec36586-bf95-4942-9956-95f6dcb49931\", \"c438e479-80d9-4524-9a79-cf2ee54874f4\": \"c438e479-80d9-4524-9a79-cf2ee54874f4\", \"caaf1dc7-96f4-44cf-a4cb-1c661093f8ec\": \"caaf1dc7-96f4-44cf-a4cb-1c661093f8ec\", \"80ce6601-eb0d-40e6-bd90-0c5bc7a99c21\": \"80ce6601-eb0d-40e6-bd90-0c5bc7a99c21\", \"40c447ff-f802-482f-b091-71a611be56dd\": \"40c447ff-f802-482f-b091-71a611be56dd\", \"65d14569-852b-4898-be4d-4fcccf601712\": \"65d14569-852b-4898-be4d-4fcccf601712\", \"b7020795-94b9-4c33-b156-d4ad93a5b9e0\": \"b7020795-94b9-4c33-b156-d4ad93a5b9e0\", \"aa18d29a-9d3e-404c-b9dc-6e76b0bd7d30\": \"aa18d29a-9d3e-404c-b9dc-6e76b0bd7d30\", \"f0ac4de6-4dc9-442b-b3ba-958758c859bb\": \"f0ac4de6-4dc9-442b-b3ba-958758c859bb\", \"49d2f703-5d4d-4888-8f13-26c4ca4d6106\": \"49d2f703-5d4d-4888-8f13-26c4ca4d6106\", \"dd6150be-c3de-4c17-8379-26e14769a408\": \"dd6150be-c3de-4c17-8379-26e14769a408\", \"e9c08c41-1453-4f28-bb73-4977f7a3e061\": \"e9c08c41-1453-4f28-bb73-4977f7a3e061\", \"1ccc9f32-fed7-4b49-a35a-d86551853381\": \"1ccc9f32-fed7-4b49-a35a-d86551853381\", \"4a790d38-08fa-4e25-a3a1-f400d78dfac7\": \"4a790d38-08fa-4e25-a3a1-f400d78dfac7\", \"0454941d-add1-47f9-b135-1e3428061759\": \"0454941d-add1-47f9-b135-1e3428061759\", \"40713cfb-bbfc-4903-94f1-61ed3fad4768\": \"40713cfb-bbfc-4903-94f1-61ed3fad4768\", \"8b9d1658-f552-4450-afd8-1aa120481997\": \"8b9d1658-f552-4450-afd8-1aa120481997\", \"e81c784c-acbb-43b4-8058-be4b35e72bb0\": \"e81c784c-acbb-43b4-8058-be4b35e72bb0\", \"6dcb632a-7c02-483b-b083-4fe86b480cee\": \"6dcb632a-7c02-483b-b083-4fe86b480cee\", \"93c2662b-bd33-47bc-b84f-0acdf6ed92fc\": \"93c2662b-bd33-47bc-b84f-0acdf6ed92fc\", \"10c7b069-ece7-4e5b-b847-304aea88f3b9\": \"10c7b069-ece7-4e5b-b847-304aea88f3b9\", \"1c38265b-7d1b-4025-9e10-f506507381e8\": \"1c38265b-7d1b-4025-9e10-f506507381e8\", \"b6e23cba-2bca-4270-a397-4afdcfcd7684\": \"b6e23cba-2bca-4270-a397-4afdcfcd7684\", \"b2fe9f72-f2a7-4c7c-93e6-b35d459f9a1d\": \"b2fe9f72-f2a7-4c7c-93e6-b35d459f9a1d\", \"6b42077a-56ef-43e2-bf20-cb7e23bcf6d7\": \"6b42077a-56ef-43e2-bf20-cb7e23bcf6d7\", \"3ef60cf2-0a36-4a14-a70e-7a585b859b72\": \"3ef60cf2-0a36-4a14-a70e-7a585b859b72\", \"cd0a325d-fc96-4616-ad5b-ee1d145a9024\": \"cd0a325d-fc96-4616-ad5b-ee1d145a9024\", \"f6e25830-df82-423c-a546-be17c62e7c62\": \"f6e25830-df82-423c-a546-be17c62e7c62\", \"fbd5d640-fa43-4ca8-b340-7204d721c75c\": \"fbd5d640-fa43-4ca8-b340-7204d721c75c\", \"2099d73f-da12-49cf-97de-e55c461235d8\": \"2099d73f-da12-49cf-97de-e55c461235d8\", \"430b4b86-1d56-4e9b-bbeb-ef80035e0119\": \"430b4b86-1d56-4e9b-bbeb-ef80035e0119\", \"e44a18c9-c054-4351-afe1-e1db0021a540\": \"e44a18c9-c054-4351-afe1-e1db0021a540\", \"53289194-d4d3-47e2-bea0-46003e79e62a\": \"53289194-d4d3-47e2-bea0-46003e79e62a\", \"cad75833-26b2-44bc-a701-cd3156747d35\": \"cad75833-26b2-44bc-a701-cd3156747d35\", \"39a75127-ac4c-46f7-a260-3bcce1835726\": \"39a75127-ac4c-46f7-a260-3bcce1835726\", \"36e2c426-d50c-4998-9efd-cefb543217f4\": \"36e2c426-d50c-4998-9efd-cefb543217f4\", \"7c017c7d-6aa7-407f-91c8-f9c260e2865f\": \"7c017c7d-6aa7-407f-91c8-f9c260e2865f\", \"fea86992-68ff-42e4-a325-c4746ce77b3e\": \"fea86992-68ff-42e4-a325-c4746ce77b3e\", \"229f4da5-3b8a-4913-9040-02057060816e\": \"229f4da5-3b8a-4913-9040-02057060816e\", \"00da0608-5bc6-40b0-81d1-21aac83a7d66\": \"00da0608-5bc6-40b0-81d1-21aac83a7d66\", \"2c028426-4dab-4303-a807-4e5742790684\": \"2c028426-4dab-4303-a807-4e5742790684\", \"b26fe936-e89f-49f0-9699-805663545d45\": \"b26fe936-e89f-49f0-9699-805663545d45\", \"c853af50-d1a6-49fc-a56b-3e1da6896e57\": \"c853af50-d1a6-49fc-a56b-3e1da6896e57\", \"f48cdcc7-6e87-4103-9757-b36fdbe411ec\": \"f48cdcc7-6e87-4103-9757-b36fdbe411ec\", \"4ea297b1-1eb8-4579-9b3b-cf07c38eae43\": \"4ea297b1-1eb8-4579-9b3b-cf07c38eae43\", \"0ab774d7-1380-4618-b9b9-5209a11b752b\": \"0ab774d7-1380-4618-b9b9-5209a11b752b\", \"9254902a-d42a-4da8-ba61-e3d93357b8c2\": \"9254902a-d42a-4da8-ba61-e3d93357b8c2\", \"61c82f89-7071-4b09-a1d8-1b7ce914f59b\": \"61c82f89-7071-4b09-a1d8-1b7ce914f59b\", \"f74380d2-adff-456d-af09-d5f2edf36c67\": \"f74380d2-adff-456d-af09-d5f2edf36c67\", \"60e14566-7102-458b-845a-ec09efaf0af5\": \"60e14566-7102-458b-845a-ec09efaf0af5\", \"b964e466-e3ff-43a4-b363-b7525247b843\": \"b964e466-e3ff-43a4-b363-b7525247b843\", \"2f598c7b-b11f-4769-8d5a-653b20f49752\": \"2f598c7b-b11f-4769-8d5a-653b20f49752\", \"81c226c1-cb56-4acb-9e3b-64df933a093f\": \"81c226c1-cb56-4acb-9e3b-64df933a093f\", \"d53e9582-65e9-4bf1-baaf-d62f2e63621f\": \"d53e9582-65e9-4bf1-baaf-d62f2e63621f\", \"d9245452-207c-4936-b241-f1b18d65c5e4\": \"d9245452-207c-4936-b241-f1b18d65c5e4\", \"fc176161-6337-4f7e-9393-fce27cda8a54\": \"fc176161-6337-4f7e-9393-fce27cda8a54\", \"7d07c410-2824-44e8-af4c-9acfd1546a22\": \"7d07c410-2824-44e8-af4c-9acfd1546a22\", \"94afe123-7190-419b-897a-7707d60b51ca\": \"94afe123-7190-419b-897a-7707d60b51ca\", \"9c467125-217d-46ab-9457-733026bc9fa0\": \"9c467125-217d-46ab-9457-733026bc9fa0\", \"2f15cdba-ed3d-448c-95c6-99aa9568521c\": \"2f15cdba-ed3d-448c-95c6-99aa9568521c\", \"eca5a42f-0d0e-4a4a-99ed-148c3574be7a\": \"eca5a42f-0d0e-4a4a-99ed-148c3574be7a\", \"32039a7a-ff46-4f6e-bce6-4922dd68f590\": \"32039a7a-ff46-4f6e-bce6-4922dd68f590\", \"48aca0fa-0821-447c-8c8e-b4ea98da6d5c\": \"48aca0fa-0821-447c-8c8e-b4ea98da6d5c\", \"70b3a89a-fd90-4e11-bb87-bb974007f264\": \"70b3a89a-fd90-4e11-bb87-bb974007f264\", \"e48284ad-7b84-4160-9872-f73fa4f10f97\": \"e48284ad-7b84-4160-9872-f73fa4f10f97\", \"941c071c-d48b-4a35-aafe-c1112b648bc9\": \"941c071c-d48b-4a35-aafe-c1112b648bc9\", \"940324c6-cb73-46b4-b13c-5e12e35b5b14\": \"940324c6-cb73-46b4-b13c-5e12e35b5b14\", \"35753804-bd13-4844-a314-d3ed5fb6fbc4\": \"35753804-bd13-4844-a314-d3ed5fb6fbc4\", \"305a64ad-3ab0-4d1c-bd4a-04522013cd6b\": \"305a64ad-3ab0-4d1c-bd4a-04522013cd6b\", \"cec23ed6-a66e-4bcd-b87c-aea9261fb206\": \"cec23ed6-a66e-4bcd-b87c-aea9261fb206\", \"4f21a0e0-a898-4d22-87c0-a6fcbcead593\": \"4f21a0e0-a898-4d22-87c0-a6fcbcead593\", \"74378656-0ab9-43b3-ad98-38bdfac54f74\": \"74378656-0ab9-43b3-ad98-38bdfac54f74\", \"39d8c49d-e5e9-4c01-9b4b-13bd0fca8f87\": \"39d8c49d-e5e9-4c01-9b4b-13bd0fca8f87\", \"e3b434f3-2bc3-4542-a0da-8099357afb72\": \"e3b434f3-2bc3-4542-a0da-8099357afb72\", \"ec7f122c-da20-402e-935d-8d2ddce8dc1b\": \"ec7f122c-da20-402e-935d-8d2ddce8dc1b\", \"17fdd169-23dc-4b82-86e2-bc38f69e2013\": \"17fdd169-23dc-4b82-86e2-bc38f69e2013\", \"0197d03b-6acd-405d-ab14-95a5a6e25cc9\": \"0197d03b-6acd-405d-ab14-95a5a6e25cc9\", \"280dbfba-0691-415b-85fc-8f0b01dc032b\": \"280dbfba-0691-415b-85fc-8f0b01dc032b\", \"64943699-fe8d-4849-9ea9-b93d674723bd\": \"64943699-fe8d-4849-9ea9-b93d674723bd\", \"36f10c1a-3a40-4ecc-b6b8-bb9aff51d65f\": \"36f10c1a-3a40-4ecc-b6b8-bb9aff51d65f\", \"f4a4cea5-ef75-426f-9f0a-ab507ad97c16\": \"f4a4cea5-ef75-426f-9f0a-ab507ad97c16\", \"825ae488-b03b-481c-8737-e4c1bf201129\": \"825ae488-b03b-481c-8737-e4c1bf201129\", \"f2137697-0d0b-4154-97a3-f25722974ea1\": \"f2137697-0d0b-4154-97a3-f25722974ea1\", \"06948dbc-6e10-41ee-b89f-261d7b9d04f7\": \"06948dbc-6e10-41ee-b89f-261d7b9d04f7\", \"4c3ec19f-482e-45e1-b33a-f5da685cd4a2\": \"4c3ec19f-482e-45e1-b33a-f5da685cd4a2\", \"46fb6e9a-dfb3-4cd6-9f85-ab00d939165b\": \"46fb6e9a-dfb3-4cd6-9f85-ab00d939165b\", \"24e86b16-a7df-413a-b843-f54b7537b6f7\": \"24e86b16-a7df-413a-b843-f54b7537b6f7\", \"6887a7ec-9397-492d-bd67-412455d2accc\": \"6887a7ec-9397-492d-bd67-412455d2accc\", \"930a2b3a-e2c0-4e40-96b6-c1db202912bb\": \"930a2b3a-e2c0-4e40-96b6-c1db202912bb\", \"4e3785f7-04a5-468f-920d-abccc5cc5c55\": \"4e3785f7-04a5-468f-920d-abccc5cc5c55\", \"06f8df75-a9b9-4bdf-90f6-092c5111969d\": \"06f8df75-a9b9-4bdf-90f6-092c5111969d\", \"05141fb5-4eaf-4615-b228-5816f2d91989\": \"05141fb5-4eaf-4615-b228-5816f2d91989\", \"3c3fc40f-0f66-4b57-8000-3b8c317c6839\": \"3c3fc40f-0f66-4b57-8000-3b8c317c6839\", \"1e6baac5-d76b-458a-ba1a-0df1d439835f\": \"1e6baac5-d76b-458a-ba1a-0df1d439835f\", \"071b001d-b7f0-45a8-9f9e-2c6aa952a352\": \"071b001d-b7f0-45a8-9f9e-2c6aa952a352\", \"1dc96ec7-354d-413c-95ca-974ac0a801eb\": \"1dc96ec7-354d-413c-95ca-974ac0a801eb\", \"48c1e5ea-5742-4554-8158-c687f770dd27\": \"48c1e5ea-5742-4554-8158-c687f770dd27\", \"bdf36746-f746-4b21-a6a2-f8c88c9b52c2\": \"bdf36746-f746-4b21-a6a2-f8c88c9b52c2\", \"0db6c9ef-167d-41b9-a099-16003e7e8c07\": \"0db6c9ef-167d-41b9-a099-16003e7e8c07\", \"60fb418a-fbe8-4b7b-aa0c-72b1537c5a87\": \"60fb418a-fbe8-4b7b-aa0c-72b1537c5a87\", \"db90d93d-b375-411a-abec-646a499f811b\": \"db90d93d-b375-411a-abec-646a499f811b\", \"ba14968e-c36c-4d89-a5dd-ee986b2ffc2f\": \"ba14968e-c36c-4d89-a5dd-ee986b2ffc2f\", \"cc2f6de0-13a2-4107-9e09-3ce5bb4f73e6\": \"cc2f6de0-13a2-4107-9e09-3ce5bb4f73e6\", \"fae14125-fed0-43db-91cf-e2ce20446bc0\": \"fae14125-fed0-43db-91cf-e2ce20446bc0\", \"408e5b52-aaeb-410a-88f7-4ba8832fa88c\": \"408e5b52-aaeb-410a-88f7-4ba8832fa88c\", \"7df34056-8c0e-4a03-bf42-ba2e092b78d7\": \"7df34056-8c0e-4a03-bf42-ba2e092b78d7\", \"813ce3b4-5cc6-4aa7-ada4-8813b4b2d03e\": \"813ce3b4-5cc6-4aa7-ada4-8813b4b2d03e\", \"907b30bb-095c-4526-a777-6d32d760d9ad\": \"907b30bb-095c-4526-a777-6d32d760d9ad\", \"74996055-d7f2-4d13-bd3f-1e3e3bc82c42\": \"74996055-d7f2-4d13-bd3f-1e3e3bc82c42\", \"d67c7a1d-b2ef-400a-8958-e4772211dac3\": \"d67c7a1d-b2ef-400a-8958-e4772211dac3\", \"d27dcb49-7a07-4545-b7c4-155ee1a5118b\": \"d27dcb49-7a07-4545-b7c4-155ee1a5118b\", \"b04589d9-ddfb-47d1-978d-ed93f3dd5713\": \"b04589d9-ddfb-47d1-978d-ed93f3dd5713\", \"f2e75f89-8bc3-4d15-b4a7-b50f2c93995e\": \"f2e75f89-8bc3-4d15-b4a7-b50f2c93995e\", \"e82b56cc-467b-414e-8e8d-69dd11e96516\": \"e82b56cc-467b-414e-8e8d-69dd11e96516\", \"d10110aa-f86a-43bf-9180-15afe224d59f\": \"d10110aa-f86a-43bf-9180-15afe224d59f\", \"3dbea407-5b5c-48a2-8b2c-0cb02ca12439\": \"3dbea407-5b5c-48a2-8b2c-0cb02ca12439\", \"1c8c8cab-5117-4ac2-b809-647a3470e3d6\": \"1c8c8cab-5117-4ac2-b809-647a3470e3d6\", \"6b96ca4e-4663-4e56-896d-7cdd72a32c27\": \"6b96ca4e-4663-4e56-896d-7cdd72a32c27\", \"147bf3fc-d36e-4591-bc01-869005210fe6\": \"147bf3fc-d36e-4591-bc01-869005210fe6\", \"e449cb4a-49bd-4149-b1e8-bac315f2d4e9\": \"e449cb4a-49bd-4149-b1e8-bac315f2d4e9\", \"d64fcf8a-a2a5-42e6-93c1-e17981835c2d\": \"d64fcf8a-a2a5-42e6-93c1-e17981835c2d\", \"810c1ace-fa62-4994-8e1e-2bf4888f048c\": \"810c1ace-fa62-4994-8e1e-2bf4888f048c\", \"95dfa2b4-4ac2-41cd-a9a7-c38983523495\": \"95dfa2b4-4ac2-41cd-a9a7-c38983523495\", \"6c539a5a-449b-4e72-8b89-1b875c1bf8d2\": \"6c539a5a-449b-4e72-8b89-1b875c1bf8d2\", \"db3a9a4a-69bf-46c5-8ce5-f399c9647d26\": \"db3a9a4a-69bf-46c5-8ce5-f399c9647d26\", \"229ee5f4-39aa-4266-9c7b-35a05e1ee76e\": \"229ee5f4-39aa-4266-9c7b-35a05e1ee76e\", \"359dddeb-0bd8-4453-9a81-d29d8a77a083\": \"359dddeb-0bd8-4453-9a81-d29d8a77a083\", \"e8ac0cba-8df7-41ab-99bb-e4673aa97d8c\": \"e8ac0cba-8df7-41ab-99bb-e4673aa97d8c\", \"802739c7-072c-40c5-b071-122918743ec7\": \"802739c7-072c-40c5-b071-122918743ec7\", \"2bd4bbfe-11a9-4ffd-934d-c7b10b9aaa35\": \"2bd4bbfe-11a9-4ffd-934d-c7b10b9aaa35\", \"55437ef4-e47a-4d37-8614-9fcb643a89de\": \"55437ef4-e47a-4d37-8614-9fcb643a89de\", \"6867d4a2-1631-47c1-940a-59841cfbb5c2\": \"6867d4a2-1631-47c1-940a-59841cfbb5c2\", \"ad202fd0-2402-4fc7-bb52-455750d68d38\": \"ad202fd0-2402-4fc7-bb52-455750d68d38\", \"5afe5e8d-a0fb-459e-ae9f-fb6159a85542\": \"5afe5e8d-a0fb-459e-ae9f-fb6159a85542\", \"267fb880-fa75-4ddb-8651-6a4f889eced9\": \"267fb880-fa75-4ddb-8651-6a4f889eced9\", \"4758494e-7ae6-444c-8874-329a1f5ced88\": \"4758494e-7ae6-444c-8874-329a1f5ced88\", \"1682bb15-c5c4-4ae9-9d17-0421c52db7da\": \"1682bb15-c5c4-4ae9-9d17-0421c52db7da\", \"696aa481-12fe-4646-b972-3fb38f60cd66\": \"696aa481-12fe-4646-b972-3fb38f60cd66\", \"7e2edb45-ae74-4386-9ec7-c5333d0ce5a2\": \"7e2edb45-ae74-4386-9ec7-c5333d0ce5a2\", \"fbd7a027-7ac6-4b42-a376-7dfb658bd1c5\": \"fbd7a027-7ac6-4b42-a376-7dfb658bd1c5\", \"2f8faf85-bad0-44a9-8c3d-b5e1a3226b9d\": \"2f8faf85-bad0-44a9-8c3d-b5e1a3226b9d\", \"40a86d32-67a6-4a97-8043-8a1e3c3cf708\": \"40a86d32-67a6-4a97-8043-8a1e3c3cf708\", \"919eafd7-a14f-40ca-abe7-f4f4790717af\": \"919eafd7-a14f-40ca-abe7-f4f4790717af\", \"d5be7218-fe9f-471c-b24c-39699e33492a\": \"d5be7218-fe9f-471c-b24c-39699e33492a\", \"1490e3b6-07af-4166-8597-ee6dd8c80254\": \"1490e3b6-07af-4166-8597-ee6dd8c80254\", \"1d57c39c-0e1e-4b00-bc7b-d6c16058564d\": \"1d57c39c-0e1e-4b00-bc7b-d6c16058564d\", \"0337da78-e984-4313-9d73-7748c2023d43\": \"0337da78-e984-4313-9d73-7748c2023d43\", \"30668d15-1fdd-4867-a9e7-0d618c887aa6\": \"30668d15-1fdd-4867-a9e7-0d618c887aa6\", \"09ce4353-5e19-4375-9104-c298ba3878e8\": \"09ce4353-5e19-4375-9104-c298ba3878e8\", \"d4b85677-cf29-4d8a-94c0-d45ec83cc9cc\": \"d4b85677-cf29-4d8a-94c0-d45ec83cc9cc\", \"eed26e07-d39a-48ae-aab5-3c89987888ce\": \"eed26e07-d39a-48ae-aab5-3c89987888ce\", \"ae5a9378-d28d-4123-bdb5-9d20d1a59fa4\": \"ae5a9378-d28d-4123-bdb5-9d20d1a59fa4\", \"054b273e-1dda-4039-8411-cc58e03ac28b\": \"054b273e-1dda-4039-8411-cc58e03ac28b\", \"52f9000b-13d1-4bc6-a5f8-c33897040af2\": \"52f9000b-13d1-4bc6-a5f8-c33897040af2\", \"c97bb784-d6e6-4140-b99e-68f5a522f1ed\": \"c97bb784-d6e6-4140-b99e-68f5a522f1ed\", \"853c99e6-cac7-4ba1-9278-7c2246afc77f\": \"853c99e6-cac7-4ba1-9278-7c2246afc77f\", \"87402940-cae0-4dc6-97b4-95d115c6c842\": \"87402940-cae0-4dc6-97b4-95d115c6c842\", \"5597d0b1-be06-4045-a0f6-5576505fe0cf\": \"5597d0b1-be06-4045-a0f6-5576505fe0cf\", \"4ba9ee12-1973-4226-9bb9-993f2ef06837\": \"4ba9ee12-1973-4226-9bb9-993f2ef06837\", \"41895ddb-aa49-4358-aa0c-802af314f2d7\": \"41895ddb-aa49-4358-aa0c-802af314f2d7\", \"5be30a2b-6d4d-402e-b7ae-c9d07e2905a1\": \"5be30a2b-6d4d-402e-b7ae-c9d07e2905a1\", \"1f52efea-625a-4732-9048-7660f1e78c7b\": \"1f52efea-625a-4732-9048-7660f1e78c7b\", \"871f7c58-30b2-4b8a-ae0b-57bb63431cc8\": \"871f7c58-30b2-4b8a-ae0b-57bb63431cc8\", \"387fc1e3-e36c-40d2-9c2d-01465da99cb6\": \"387fc1e3-e36c-40d2-9c2d-01465da99cb6\", \"f0c3f99b-0dfd-4201-84b3-ded1240f5a19\": \"f0c3f99b-0dfd-4201-84b3-ded1240f5a19\", \"a4cc945d-4443-49b5-b1d2-35f0845d5f02\": \"a4cc945d-4443-49b5-b1d2-35f0845d5f02\", \"d0bf1a44-da79-45f9-b7fc-6d11bc5d6e35\": \"d0bf1a44-da79-45f9-b7fc-6d11bc5d6e35\", \"0297885a-7618-41a7-aae3-c646af0747a5\": \"0297885a-7618-41a7-aae3-c646af0747a5\", \"9b1b62b4-a914-4276-b58c-8c7d688066e9\": \"9b1b62b4-a914-4276-b58c-8c7d688066e9\", \"053b1171-2d04-4870-9b72-460cc1155cdf\": \"053b1171-2d04-4870-9b72-460cc1155cdf\", \"50b2c78c-474c-433b-acce-5ccd10f6c3a2\": \"50b2c78c-474c-433b-acce-5ccd10f6c3a2\", \"4bb10ef7-9f00-4167-8cd8-48d5e4705c66\": \"4bb10ef7-9f00-4167-8cd8-48d5e4705c66\", \"e959e362-161a-4334-b750-287c1355ec5e\": \"e959e362-161a-4334-b750-287c1355ec5e\", \"8901c722-2477-416d-bf73-4ce0f89030eb\": \"8901c722-2477-416d-bf73-4ce0f89030eb\", \"efdf7910-5411-44de-a027-ce8434648357\": \"efdf7910-5411-44de-a027-ce8434648357\", \"5151596a-a156-4d3f-84e8-2b8a52918b99\": \"5151596a-a156-4d3f-84e8-2b8a52918b99\", \"2a12bd84-3626-4f9b-9b73-4f81266ebe36\": \"2a12bd84-3626-4f9b-9b73-4f81266ebe36\", \"6a3dd403-2d7b-4a8e-b70f-e3ac07fdf181\": \"6a3dd403-2d7b-4a8e-b70f-e3ac07fdf181\", \"a97b357b-8aa6-416d-bbb5-afe32547dd3a\": \"a97b357b-8aa6-416d-bbb5-afe32547dd3a\", \"727cb92b-7e5c-49bf-b7e7-a9f7a813a858\": \"727cb92b-7e5c-49bf-b7e7-a9f7a813a858\", \"cd230187-f026-4e0f-a26b-7be03e930358\": \"cd230187-f026-4e0f-a26b-7be03e930358\", \"590c4872-463b-4364-9d08-cf0f23e6d31e\": \"590c4872-463b-4364-9d08-cf0f23e6d31e\", \"2c55e323-138b-4367-be91-eff4bad2da29\": \"2c55e323-138b-4367-be91-eff4bad2da29\", \"70cbce24-bc64-4bd1-966f-da79cda20846\": \"70cbce24-bc64-4bd1-966f-da79cda20846\", \"47f48f5e-4ad8-4740-8b70-543556923077\": \"47f48f5e-4ad8-4740-8b70-543556923077\", \"7de04e9b-b377-4718-b649-75d87a201299\": \"7de04e9b-b377-4718-b649-75d87a201299\", \"97290686-f154-45fe-b1a4-343c9a4dc68f\": \"97290686-f154-45fe-b1a4-343c9a4dc68f\", \"d76d765e-0e38-4d53-bc92-70c4e9adacef\": \"d76d765e-0e38-4d53-bc92-70c4e9adacef\", \"7b2daacf-8e92-4792-9ef4-cc125c4538b5\": \"7b2daacf-8e92-4792-9ef4-cc125c4538b5\", \"070f4923-d5ae-492f-ba46-4c7f24dcd2bb\": \"070f4923-d5ae-492f-ba46-4c7f24dcd2bb\", \"ef4be832-98ea-4818-ab08-a9638f2a9c47\": \"ef4be832-98ea-4818-ab08-a9638f2a9c47\", \"d5dd853f-0f8f-4170-8e78-8ea2442b3c79\": \"d5dd853f-0f8f-4170-8e78-8ea2442b3c79\", \"04ed7c80-ad4b-4819-99bd-1b3a02aa3f23\": \"04ed7c80-ad4b-4819-99bd-1b3a02aa3f23\", \"c601f6c3-6897-4e9b-a37a-aac3c76d9e20\": \"c601f6c3-6897-4e9b-a37a-aac3c76d9e20\", \"189a5a61-3f05-432b-a482-99dcda445483\": \"189a5a61-3f05-432b-a482-99dcda445483\", \"2773f7c4-67c0-4eda-b313-0d2115af3b4d\": \"2773f7c4-67c0-4eda-b313-0d2115af3b4d\", \"ee562c32-2730-473a-a3b5-b21ede2974f3\": \"ee562c32-2730-473a-a3b5-b21ede2974f3\", \"9214a4b5-3109-452e-823c-ed4c20265e86\": \"9214a4b5-3109-452e-823c-ed4c20265e86\", \"fcbb6017-70f4-45ed-b244-e63e7a33e14f\": \"fcbb6017-70f4-45ed-b244-e63e7a33e14f\", \"d86f57bc-8a76-42c5-8ded-1680f67d076f\": \"d86f57bc-8a76-42c5-8ded-1680f67d076f\", \"71bb2ae7-59d6-4cad-8283-c407cd5a9dc2\": \"71bb2ae7-59d6-4cad-8283-c407cd5a9dc2\", \"271d2b46-7b4d-4787-80d9-0bb7802a5d96\": \"271d2b46-7b4d-4787-80d9-0bb7802a5d96\", \"c14c12d6-54d2-4103-8bf8-eb62304b46ec\": \"c14c12d6-54d2-4103-8bf8-eb62304b46ec\", \"6884c219-f4fe-49c0-aad3-1ae1420ce327\": \"6884c219-f4fe-49c0-aad3-1ae1420ce327\", \"db31a8b9-f4bb-4be8-b46b-555ee1c597de\": \"db31a8b9-f4bb-4be8-b46b-555ee1c597de\", \"9d8c047a-2ef2-4658-9c03-624134cacf54\": \"9d8c047a-2ef2-4658-9c03-624134cacf54\", \"2840295f-dff2-483c-ae68-5a67d2ba73d2\": \"2840295f-dff2-483c-ae68-5a67d2ba73d2\", \"59ec8e47-1d67-4d9b-b3e0-62564f9a68a5\": \"59ec8e47-1d67-4d9b-b3e0-62564f9a68a5\", \"f8c22af5-9501-4aa8-8e77-820d7b30b364\": \"f8c22af5-9501-4aa8-8e77-820d7b30b364\", \"44bee930-169d-45f3-9a46-0478696f3f9e\": \"44bee930-169d-45f3-9a46-0478696f3f9e\", \"a0607dcc-7862-4b1f-86a9-f7577ea8a4de\": \"a0607dcc-7862-4b1f-86a9-f7577ea8a4de\", \"804ab134-b66b-4359-a834-a0280fcd1e80\": \"804ab134-b66b-4359-a834-a0280fcd1e80\", \"8f4abbba-5ab6-461a-83c4-689d8bbeab76\": \"8f4abbba-5ab6-461a-83c4-689d8bbeab76\", \"d9fc33cb-648c-4bf6-9f59-ac2e86809912\": \"d9fc33cb-648c-4bf6-9f59-ac2e86809912\", \"227efce8-0831-494e-a69e-4515ebcb9a6c\": \"227efce8-0831-494e-a69e-4515ebcb9a6c\", \"13db01ef-ff9a-40de-900b-235a023964c5\": \"13db01ef-ff9a-40de-900b-235a023964c5\", \"1838048f-3923-4564-b7f6-6522fd3b4a7c\": \"1838048f-3923-4564-b7f6-6522fd3b4a7c\", \"0189284b-bf02-4646-b587-ecc0b798515d\": \"0189284b-bf02-4646-b587-ecc0b798515d\", \"a5128a4c-168f-42a5-95f4-30bbc3de9ac0\": \"a5128a4c-168f-42a5-95f4-30bbc3de9ac0\", \"2f4b7cb8-b43e-4e37-a2e8-3324bf5680ff\": \"2f4b7cb8-b43e-4e37-a2e8-3324bf5680ff\", \"64fdd176-0731-4025-b6fd-7beda7411fe6\": \"64fdd176-0731-4025-b6fd-7beda7411fe6\", \"1118252b-ce6c-43d9-8f00-88a1c1c26f30\": \"1118252b-ce6c-43d9-8f00-88a1c1c26f30\", \"d99de902-edf3-4668-8bac-ead0b8620075\": \"d99de902-edf3-4668-8bac-ead0b8620075\", \"e953f13d-079b-490f-b9c1-8b0c67eaf542\": \"e953f13d-079b-490f-b9c1-8b0c67eaf542\", \"4e72aba1-9203-42fb-a6af-e4395d82aa05\": \"4e72aba1-9203-42fb-a6af-e4395d82aa05\", \"471b2541-34cb-4d39-8085-f9e27449032a\": \"471b2541-34cb-4d39-8085-f9e27449032a\", \"9dd4aef5-d7dc-4db0-be82-34f7479a0983\": \"9dd4aef5-d7dc-4db0-be82-34f7479a0983\", \"323ca076-477d-4ca4-9fc2-9f4bab9bb7dd\": \"323ca076-477d-4ca4-9fc2-9f4bab9bb7dd\", \"e7c0081e-ca15-4923-8402-1dc641751c36\": \"e7c0081e-ca15-4923-8402-1dc641751c36\", \"a1dc29bd-0065-4c73-ae8b-8e7253e29629\": \"a1dc29bd-0065-4c73-ae8b-8e7253e29629\", \"867e98c6-ec18-4398-aeda-ba01e5a596d3\": \"867e98c6-ec18-4398-aeda-ba01e5a596d3\", \"db63bb37-2b94-48f5-a27f-779f3cc0eba6\": \"db63bb37-2b94-48f5-a27f-779f3cc0eba6\", \"699b9d39-913d-4977-b20a-736ea2b9fa4f\": \"699b9d39-913d-4977-b20a-736ea2b9fa4f\", \"acf96601-8548-43fe-9017-2617aa61a078\": \"acf96601-8548-43fe-9017-2617aa61a078\", \"c77d3dd8-d615-4161-bafb-02217d837b3d\": \"c77d3dd8-d615-4161-bafb-02217d837b3d\", \"5a938971-5a33-4435-abdd-320688604e47\": \"5a938971-5a33-4435-abdd-320688604e47\", \"de07053a-6e1f-4db4-9159-391361c29215\": \"de07053a-6e1f-4db4-9159-391361c29215\", \"5a8d7c89-ddeb-43b6-b91f-df274f7e1d55\": \"5a8d7c89-ddeb-43b6-b91f-df274f7e1d55\", \"1854b8e5-9746-45a3-a157-6d7edde29d20\": \"1854b8e5-9746-45a3-a157-6d7edde29d20\", \"4d4760bf-8505-459d-85b9-1bc75d28f9d2\": \"4d4760bf-8505-459d-85b9-1bc75d28f9d2\", \"986a0625-3d3c-4248-9016-13b32540d52d\": \"986a0625-3d3c-4248-9016-13b32540d52d\", \"b761acea-f4f5-4759-8968-eb180f6f30ef\": \"b761acea-f4f5-4759-8968-eb180f6f30ef\", \"61ebee3e-6ec4-4ab0-9c8e-a91a03ddb761\": \"61ebee3e-6ec4-4ab0-9c8e-a91a03ddb761\", \"8684ec3a-ab31-4ca2-a271-e515a75126c3\": \"8684ec3a-ab31-4ca2-a271-e515a75126c3\", \"5a13faab-72ff-45f9-bb18-7f10877e58d4\": \"5a13faab-72ff-45f9-bb18-7f10877e58d4\", \"27e457b3-d9d0-4fe6-aaaa-0c1ea4cce5c1\": \"27e457b3-d9d0-4fe6-aaaa-0c1ea4cce5c1\", \"0da0f68d-e9fa-419a-b3a0-1d14d67c51a8\": \"0da0f68d-e9fa-419a-b3a0-1d14d67c51a8\", \"2f6be066-05c0-44bc-a6a1-18f22fc74aca\": \"2f6be066-05c0-44bc-a6a1-18f22fc74aca\", \"55f02c4e-a5f4-48db-8471-8bf40e83dad1\": \"55f02c4e-a5f4-48db-8471-8bf40e83dad1\", \"d4bd381e-5319-4b31-be4f-5fd8147d7ca3\": \"d4bd381e-5319-4b31-be4f-5fd8147d7ca3\", \"def3fd6d-e1e2-42cd-834d-09f5b36011f3\": \"def3fd6d-e1e2-42cd-834d-09f5b36011f3\", \"2ab928e8-8607-449e-9da1-d846aaa83243\": \"2ab928e8-8607-449e-9da1-d846aaa83243\", \"3179745c-e32a-427e-a579-14a45509b982\": \"3179745c-e32a-427e-a579-14a45509b982\", \"2c1c3d21-9db7-4886-bb48-1a66aa9c624e\": \"2c1c3d21-9db7-4886-bb48-1a66aa9c624e\", \"8c0c12ba-ad8b-42e4-9015-c0544045b398\": \"8c0c12ba-ad8b-42e4-9015-c0544045b398\", \"84c3b83d-8157-43b3-9a89-2818f1dcdaf1\": \"84c3b83d-8157-43b3-9a89-2818f1dcdaf1\", \"249652e0-86c5-44de-af9a-adb0ddd33e5b\": \"249652e0-86c5-44de-af9a-adb0ddd33e5b\", \"0ffdbe61-9b44-4774-bd8b-4e9afc9a570c\": \"0ffdbe61-9b44-4774-bd8b-4e9afc9a570c\", \"9dd25989-486b-441b-8c37-c15bf90fd548\": \"9dd25989-486b-441b-8c37-c15bf90fd548\", \"25d9cafd-ce3a-4fd5-b524-0aea68396fe4\": \"25d9cafd-ce3a-4fd5-b524-0aea68396fe4\", \"3a845ad0-2449-44b0-861f-4aea05ca7145\": \"3a845ad0-2449-44b0-861f-4aea05ca7145\", \"5d62805d-f6a6-49c6-919c-d4adadc6d87b\": \"5d62805d-f6a6-49c6-919c-d4adadc6d87b\", \"076d0d45-c92e-435a-88a5-8e59abf23c8d\": \"076d0d45-c92e-435a-88a5-8e59abf23c8d\", \"8b49f73c-4dff-4a9f-830a-4e09292e85e3\": \"8b49f73c-4dff-4a9f-830a-4e09292e85e3\", \"93b997b8-a141-438a-9d65-4e25e4e7042c\": \"93b997b8-a141-438a-9d65-4e25e4e7042c\", \"917b5506-d15d-4db1-871a-a6fcb5e57e5d\": \"917b5506-d15d-4db1-871a-a6fcb5e57e5d\", \"3e90b8aa-06f4-4122-a6de-29f697da4ea5\": \"3e90b8aa-06f4-4122-a6de-29f697da4ea5\", \"860ec2d4-7045-46c0-9dba-f97d61df8e92\": \"860ec2d4-7045-46c0-9dba-f97d61df8e92\", \"52f2acd6-c389-487a-ae8d-be823f861415\": \"52f2acd6-c389-487a-ae8d-be823f861415\", \"edcff719-354f-4de6-926d-65d9daac8274\": \"edcff719-354f-4de6-926d-65d9daac8274\", \"9ba494df-7316-4431-9c47-b589fc303f52\": \"9ba494df-7316-4431-9c47-b589fc303f52\", \"0b70a95d-b4bf-493e-a1a3-c1865ba087e6\": \"0b70a95d-b4bf-493e-a1a3-c1865ba087e6\", \"80e0b818-b217-4223-8e18-98910eb13cf7\": \"80e0b818-b217-4223-8e18-98910eb13cf7\", \"69352269-0a97-4acc-9515-30c8b7db66f6\": \"69352269-0a97-4acc-9515-30c8b7db66f6\", \"836138da-839e-4507-858d-d326d6b47e0e\": \"836138da-839e-4507-858d-d326d6b47e0e\", \"3ac730ff-ee39-4d71-bd5c-be7b1f40a504\": \"3ac730ff-ee39-4d71-bd5c-be7b1f40a504\", \"dcb5bfd9-d286-447d-ac06-28f1b7918833\": \"dcb5bfd9-d286-447d-ac06-28f1b7918833\", \"8eb059e1-c2cd-4ab6-96de-ce126fa7a8cc\": \"8eb059e1-c2cd-4ab6-96de-ce126fa7a8cc\", \"38458bf4-195f-4395-b15c-e5ac95e83334\": \"38458bf4-195f-4395-b15c-e5ac95e83334\", \"18900c35-a232-47cc-a8ec-3456f6433cb9\": \"18900c35-a232-47cc-a8ec-3456f6433cb9\", \"7805cde9-5447-493c-a2c8-40efb56c1412\": \"7805cde9-5447-493c-a2c8-40efb56c1412\", \"8bd427aa-a03c-423e-bdf8-dec768e07363\": \"8bd427aa-a03c-423e-bdf8-dec768e07363\", \"42ee0da7-f599-45ea-a58b-22ca70cb04ee\": \"42ee0da7-f599-45ea-a58b-22ca70cb04ee\", \"6ca376df-3cc8-46d6-83a5-cc69b09d5555\": \"6ca376df-3cc8-46d6-83a5-cc69b09d5555\", \"69f44934-8c1e-43e9-911c-204140a74cb4\": \"69f44934-8c1e-43e9-911c-204140a74cb4\", \"32fd7583-e303-4e56-91d7-4e9ef7df6566\": \"32fd7583-e303-4e56-91d7-4e9ef7df6566\", \"0fe8c8e4-b9a7-40cb-954b-2891d9edc444\": \"0fe8c8e4-b9a7-40cb-954b-2891d9edc444\", \"6b4decf0-b78d-4c59-9eef-e6056227cc8c\": \"6b4decf0-b78d-4c59-9eef-e6056227cc8c\", \"e9a62f13-d6ab-4d2e-b59d-cba3202a2f1a\": \"e9a62f13-d6ab-4d2e-b59d-cba3202a2f1a\", \"b6de8a69-7d0d-4c9c-a37f-2d3c0fa3b5d1\": \"b6de8a69-7d0d-4c9c-a37f-2d3c0fa3b5d1\", \"3f8446ab-09ad-44b5-b7fb-5d5e8eb296d9\": \"3f8446ab-09ad-44b5-b7fb-5d5e8eb296d9\", \"9c6399ef-62c8-4675-bde1-ed4dc2e1c64a\": \"9c6399ef-62c8-4675-bde1-ed4dc2e1c64a\", \"990e566f-d343-4da0-a357-8fd716dbc51e\": \"990e566f-d343-4da0-a357-8fd716dbc51e\", \"55b6c0b9-a317-4bf8-9f4d-b5ed79772321\": \"55b6c0b9-a317-4bf8-9f4d-b5ed79772321\", \"01058712-4c68-4e84-b056-5290dd60fc32\": \"01058712-4c68-4e84-b056-5290dd60fc32\", \"7b43d942-952f-422a-9847-447e7e349ac0\": \"7b43d942-952f-422a-9847-447e7e349ac0\", \"4b5bcead-58f9-4bc7-a187-be3fe9ce08d0\": \"4b5bcead-58f9-4bc7-a187-be3fe9ce08d0\", \"16057683-bbb2-4560-ae17-09b201af1bcd\": \"16057683-bbb2-4560-ae17-09b201af1bcd\", \"55346e99-bb84-4180-92cc-c524c38c274d\": \"55346e99-bb84-4180-92cc-c524c38c274d\", \"3012d2c8-ab7f-4c31-8607-0c24342eed54\": \"3012d2c8-ab7f-4c31-8607-0c24342eed54\", \"65faa2de-2fee-4301-ba39-98a0df3ffa99\": \"65faa2de-2fee-4301-ba39-98a0df3ffa99\", \"40376706-32bf-4499-9f43-9ee042eaffd3\": \"40376706-32bf-4499-9f43-9ee042eaffd3\", \"5921ba43-863d-47a2-9818-4c8a086c0ac5\": \"5921ba43-863d-47a2-9818-4c8a086c0ac5\", \"93695ed4-8285-48ca-b244-6078d26fdb7c\": \"93695ed4-8285-48ca-b244-6078d26fdb7c\", \"09abdd86-2d75-4769-beed-94c9554653c9\": \"09abdd86-2d75-4769-beed-94c9554653c9\", \"7bf05638-2c51-4a47-a484-aeeb80ec5806\": \"7bf05638-2c51-4a47-a484-aeeb80ec5806\", \"80e11ef2-f975-46b0-b60f-2c2d9805d16d\": \"80e11ef2-f975-46b0-b60f-2c2d9805d16d\", \"5281e9d9-3548-4064-9f2f-463c3b936d8e\": \"5281e9d9-3548-4064-9f2f-463c3b936d8e\", \"31d2d950-597e-43a4-bc50-c94eb9970e10\": \"31d2d950-597e-43a4-bc50-c94eb9970e10\", \"6bf5fc6d-fb56-46a9-bbde-b350139f971f\": \"6bf5fc6d-fb56-46a9-bbde-b350139f971f\", \"48c76e51-beaf-4b00-83da-37f9b18d3c22\": \"48c76e51-beaf-4b00-83da-37f9b18d3c22\", \"097d5cd7-d245-4c39-b0fc-4b641376395c\": \"097d5cd7-d245-4c39-b0fc-4b641376395c\", \"48446d4c-b477-4e35-bb56-dd26c2cbe895\": \"48446d4c-b477-4e35-bb56-dd26c2cbe895\", \"d837da0d-15ef-47e9-8177-b8cf0bc9641b\": \"d837da0d-15ef-47e9-8177-b8cf0bc9641b\", \"276a77c6-be84-4ea9-8cb3-379955292f43\": \"276a77c6-be84-4ea9-8cb3-379955292f43\", \"1b521105-46cd-4509-a5e4-2140691867aa\": \"1b521105-46cd-4509-a5e4-2140691867aa\", \"3ada0b95-a77d-40c5-9f97-6e499af85114\": \"3ada0b95-a77d-40c5-9f97-6e499af85114\", \"c0dbdbf3-2ba4-47f2-b4ba-8492ce1c4969\": \"c0dbdbf3-2ba4-47f2-b4ba-8492ce1c4969\", \"9c52779d-a378-4d86-8c4b-709ac69c07bc\": \"9c52779d-a378-4d86-8c4b-709ac69c07bc\", \"10a3eeb2-3db0-468e-965f-17891243f0df\": \"10a3eeb2-3db0-468e-965f-17891243f0df\", \"1b71ec11-2988-4ad3-8db0-ebd95622ebe0\": \"1b71ec11-2988-4ad3-8db0-ebd95622ebe0\", \"cc9e6c1f-0daa-4977-be30-a6580d9e2f49\": \"cc9e6c1f-0daa-4977-be30-a6580d9e2f49\", \"2c2c683d-9e32-4d40-b31f-d92c58674896\": \"2c2c683d-9e32-4d40-b31f-d92c58674896\", \"0157d5e7-fb48-4ad5-b5ec-f623f9f47a57\": \"0157d5e7-fb48-4ad5-b5ec-f623f9f47a57\", \"64707b16-2db6-424b-879b-125af13ac5da\": \"64707b16-2db6-424b-879b-125af13ac5da\", \"d3a66d79-e11b-469c-b11c-d26e64643a61\": \"d3a66d79-e11b-469c-b11c-d26e64643a61\", \"06c18ca3-6491-4b78-ac15-cea16b76611d\": \"06c18ca3-6491-4b78-ac15-cea16b76611d\", \"9971754e-6862-4cbf-92b5-bfef34cf46e8\": \"9971754e-6862-4cbf-92b5-bfef34cf46e8\", \"a519fe7a-bde9-4d4d-bd85-5d17f9637bce\": \"a519fe7a-bde9-4d4d-bd85-5d17f9637bce\", \"a3485073-ff00-45e1-9d92-73763e46b0aa\": \"a3485073-ff00-45e1-9d92-73763e46b0aa\", \"ae1a77e8-b747-438b-b2d6-2056602033f6\": \"ae1a77e8-b747-438b-b2d6-2056602033f6\", \"0ae941a2-8d88-4a97-a534-10e503d93a3a\": \"0ae941a2-8d88-4a97-a534-10e503d93a3a\", \"57d120e4-4500-42e6-8670-2174ee9aae6e\": \"57d120e4-4500-42e6-8670-2174ee9aae6e\"}, \"doc_id_dict\": {}, \"embeddings_dict\": {}}"}}}
main.py ADDED
@@ -0,0 +1,643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import re
3
+ import time
4
+ import urllib.parse
5
+ from dataclasses import dataclass, field
6
+ from typing import Generator, Literal
7
+
8
+ from docs_index import NodeWithScore, ask, retrieve
9
+
10
+ import mesop as me
11
+
12
+
13
+ def on_load(e: me.LoadEvent):
14
+ state = me.state(State)
15
+ state.examples = random.sample(EXAMPLES, 3)
16
+ if "prompt" in me.query_params:
17
+ state.initial_input = me.query_params["prompt"]
18
+ me.set_theme_mode("system")
19
+ yield
20
+ me.focus_component(key=f"input-{len(state.output)}")
21
+ yield
22
+
23
+
24
+ @me.page(
25
+ on_load=on_load,
26
+ security_policy=me.SecurityPolicy(
27
+ allowed_script_srcs=[
28
+ "https://cdn.jsdelivr.net",
29
+ ],
30
+ allowed_iframe_parents=[
31
+ "https://huggingface.co",
32
+ "https://mesop-dev.github.io",
33
+ "http://localhost:*",
34
+ ],
35
+ ),
36
+ title="Mesop Docs Chat",
37
+ )
38
+ def page():
39
+ frame_listener()
40
+ return chat()
41
+
42
+
43
+ Role = Literal["user", "assistant"]
44
+
45
+ _ROLE_USER = "user"
46
+ _ROLE_ASSISTANT = "assistant"
47
+
48
+ _BOT_USER_DEFAULT = "Mesop Docs Bot"
49
+
50
+ _COLOR_BACKGROUND = me.theme_var("background")
51
+
52
+ _DEFAULT_PADDING = me.Padding.all(12)
53
+
54
+ _LABEL_BUTTON = "send"
55
+ _LABEL_BUTTON_IN_PROGRESS = "pending"
56
+ _LABEL_INPUT = "Ask Mesop Docs Bot"
57
+
58
+ _STYLE_APP_CONTAINER = me.Style(
59
+ background=_COLOR_BACKGROUND,
60
+ display="flex",
61
+ flex_direction="column",
62
+ height="100%",
63
+ )
64
+ _STYLE_TITLE = me.Style(padding=me.Padding(left=10))
65
+ _STYLE_CHAT_BOX = me.Style(
66
+ height="100%",
67
+ overflow_y="scroll",
68
+ padding=_DEFAULT_PADDING,
69
+ background=me.theme_var("background"),
70
+ )
71
+
72
+ _STYLE_CHAT_BUTTON = me.Style(margin=me.Margin(top=8, left=8))
73
+ _STYLE_CHAT_BUBBLE_NAME = me.Style(
74
+ font_weight="bold",
75
+ font_size="13px",
76
+ padding=me.Padding(left=15, right=15, bottom=5),
77
+ )
78
+
79
+
80
+ def _make_style_chat_ui_container() -> me.Style:
81
+ return me.Style(
82
+ flex_grow=1,
83
+ display="grid",
84
+ grid_template_columns="repeat(1, 1fr)",
85
+ grid_template_rows="5fr 1fr",
86
+ margin=me.Margin.symmetric(vertical=0, horizontal="auto"),
87
+ width="min(100%)",
88
+ background=_COLOR_BACKGROUND,
89
+ box_shadow=(
90
+ "0 3px 1px -2px #0003, 0 2px 2px #00000024, 0 1px 5px #0000001f"
91
+ ),
92
+ padding=me.Padding(top=3, left=12, right=12),
93
+ )
94
+
95
+
96
+ @dataclass(kw_only=True)
97
+ class Chunk:
98
+ content: str = ""
99
+ citation_numbers: list[int] = field(default_factory=list)
100
+
101
+
102
+ @dataclass(kw_only=True)
103
+ class ChatMessage:
104
+ """Chat message metadata."""
105
+
106
+ role: Role = "user"
107
+ content: str = ""
108
+ chunks: list[Chunk] = field(default_factory=list)
109
+
110
+
111
+ @dataclass(kw_only=True)
112
+ class Citation:
113
+ number: int = 0
114
+ original_numbers: list[int] = field(default_factory=list)
115
+ url: str = ""
116
+ title: str = ""
117
+ breadcrumbs: list[str] = field(default_factory=list)
118
+ content: str = ""
119
+
120
+
121
+ @me.stateclass
122
+ class State:
123
+ input: str
124
+ initial_input: str
125
+ output: list[ChatMessage]
126
+ citations: list[Citation]
127
+ intermediate_citations: list[Citation]
128
+ in_progress: bool = False
129
+ examples: list[str]
130
+
131
+
132
+ def on_blur(e: me.InputBlurEvent):
133
+ state = me.state(State)
134
+ state.input = e.value
135
+
136
+
137
+ mesop_questions = [
138
+ "How can I reset an input component?",
139
+ "Show me how to style a component",
140
+ "Create a multi-page app",
141
+ "Is it possible to create custom components?",
142
+ "Implement authentication",
143
+ "Deploy a Mesop app",
144
+ "Optimize performance",
145
+ "Can I use JavaScript libraries in Mesop?",
146
+ "Stream UI updates from an LLM API",
147
+ "Debug a Mesop application",
148
+ "Is Mesop ready for production use?",
149
+ "Create a mobile-friendly and responsive UI",
150
+ "Handle asynchronous operations",
151
+ "Implement dark mode",
152
+ "Add tooltips to Mesop components",
153
+ "Render a pandas DataFrame as a table",
154
+ "Add charts",
155
+ "Handle file uploads",
156
+ ]
157
+
158
+ EXAMPLES = [
159
+ *mesop_questions,
160
+ "How do I create a streaming chat UI?",
161
+ "How do I install Mesop?",
162
+ "How is Mesop different from other UI frameworks?",
163
+ ]
164
+
165
+
166
+ def on_click_submit(e: me.ClickEvent) -> Generator[None, None, None]:
167
+ yield from submit()
168
+
169
+
170
+ def on_input(e: me.InputEvent) -> Generator[None, None, None]:
171
+ state = me.state(State)
172
+ if len(e.value) > 2:
173
+ nodes = retrieve(e.value)
174
+ citations = get_citations(nodes)
175
+ citation_by_breadcrumb = {
176
+ tuple(citation.breadcrumbs): citation for citation in citations
177
+ }
178
+ state.intermediate_citations = list(citation_by_breadcrumb.values())
179
+ yield
180
+ if not e.value.endswith("\n"):
181
+ return
182
+ state.input = e.value
183
+
184
+ yield from submit()
185
+ me.focus_component(key=f"input-{len(state.output)}")
186
+ yield
187
+
188
+
189
+ def submit():
190
+ state = me.state(State)
191
+ if state.in_progress or not state.input:
192
+ return
193
+ input = state.input
194
+ state.input = ""
195
+ yield
196
+
197
+ state.output = []
198
+ output = state.output
199
+ output.append(ChatMessage(role=_ROLE_USER, content=input))
200
+ state.in_progress = True
201
+ yield
202
+
203
+ start_time = time.time()
204
+ output_message = transform(input, state.output)
205
+ assistant_message = ChatMessage(role=_ROLE_ASSISTANT)
206
+ output.append(assistant_message)
207
+ state.output = output
208
+
209
+ for content in output_message:
210
+ assistant_message.content += content
211
+
212
+ if (time.time() - start_time) >= 0.75:
213
+ start_time = time.time()
214
+ transform_to_chunks(assistant_message)
215
+ yield
216
+ transform_to_chunks(assistant_message)
217
+ state.in_progress = False
218
+ me.focus_component(key=f"input-{len(state.output)}")
219
+ yield
220
+
221
+
222
+ # TODO: handle the case where [4,5]
223
+ def transform_to_chunks(message: ChatMessage):
224
+ message.chunks = []
225
+ # Split the message content into chunks based on citations
226
+ chunks = re.split(r"(\[\d+(?:,\s*\d+)*\])", message.content)
227
+ # Initialize variables
228
+ current_chunk = ""
229
+ current_citations: list[int] = []
230
+
231
+ # Process each chunk
232
+ for chunk in chunks:
233
+ if re.match(r"\[\d+(?:,\s*\d+)*\]", chunk):
234
+ try:
235
+ # Remove brackets and split by comma
236
+ citation_numbers = [int(num.strip()) for num in chunk[1:-1].split(",")]
237
+ current_citations.extend(citation_numbers)
238
+ except Exception:
239
+ print("Error: Unable to parse citation numbers")
240
+ else:
241
+ # If it's text content
242
+ if current_chunk:
243
+ # If there's existing content, create a new chunk
244
+ message.chunks.append(
245
+ Chunk(
246
+ content=current_chunk,
247
+ citation_numbers=map_citation_numbers(current_citations),
248
+ )
249
+ )
250
+ current_chunk = ""
251
+ current_citations = []
252
+ # Add the new content
253
+ current_chunk += chunk
254
+
255
+ # Add the last chunk if there's any remaining content
256
+ if current_chunk:
257
+ message.chunks.append(
258
+ Chunk(
259
+ content=current_chunk,
260
+ citation_numbers=map_citation_numbers(current_citations),
261
+ )
262
+ )
263
+
264
+
265
+ def map_citation_numbers(citation_numbers: list[int]) -> list[int]:
266
+ return citation_numbers
267
+
268
+
269
+ def chat(
270
+ title: str | None = None,
271
+ bot_user: str = _BOT_USER_DEFAULT,
272
+ ):
273
+ state = me.state(State)
274
+
275
+ def toggle_theme(e: me.ClickEvent):
276
+ if me.theme_brightness() == "light":
277
+ me.set_theme_mode("dark")
278
+ else:
279
+ me.set_theme_mode("light")
280
+
281
+ with me.box(style=_STYLE_APP_CONTAINER):
282
+ with me.content_button(
283
+ type="icon",
284
+ style=me.Style(position="absolute", left=8, top=12),
285
+ on_click=toggle_theme,
286
+ ):
287
+ me.icon("light_mode" if me.theme_brightness() == "dark" else "dark_mode")
288
+ with me.box(
289
+ style=me.Style(
290
+ display="flex",
291
+ flex_direction="row",
292
+ padding=me.Padding.all(8),
293
+ background=me.theme_var("background"),
294
+ width="100%",
295
+ border=me.Border.all(
296
+ me.BorderSide(width=0, style="solid", color="black")
297
+ ),
298
+ box_shadow="0 10px 20px #0000000a, 0 2px 6px #0000000a, 0 0 1px #0000000a",
299
+ )
300
+ ):
301
+ with me.box(style=me.Style(flex_grow=1)):
302
+ me.native_textarea(
303
+ value=state.initial_input,
304
+ placeholder=_LABEL_INPUT,
305
+ key=f"input-{len(state.output)}",
306
+ on_blur=on_blur,
307
+ on_input=on_input,
308
+ style=me.Style(
309
+ color=me.theme_var("on-background"),
310
+ padding=me.Padding(top=16, left=48),
311
+ background=me.theme_var("background"),
312
+ letter_spacing="0.07px",
313
+ outline="none",
314
+ width="100%",
315
+ overflow_y="auto",
316
+ border=me.Border.all(
317
+ me.BorderSide(style="none"),
318
+ ),
319
+ ),
320
+ )
321
+ with me.content_button(
322
+ color="primary",
323
+ type="flat",
324
+ disabled=state.in_progress,
325
+ on_click=on_click_submit,
326
+ style=_STYLE_CHAT_BUTTON,
327
+ ):
328
+ me.icon(
329
+ _LABEL_BUTTON_IN_PROGRESS if state.in_progress else _LABEL_BUTTON
330
+ )
331
+
332
+ with me.box(style=_make_style_chat_ui_container()):
333
+ if title:
334
+ me.text(title, type="headline-5", style=_STYLE_TITLE)
335
+ with me.box(style=_STYLE_CHAT_BOX):
336
+ if not state.output and not state.intermediate_citations:
337
+ me.text(
338
+ "Welcome to Mesop Docs Bot! Ask me anything about Mesop.",
339
+ style=me.Style(
340
+ margin=me.Margin(bottom=24),
341
+ font_weight=500,
342
+ ),
343
+ )
344
+ with me.box(
345
+ style=me.Style(
346
+ display="flex",
347
+ flex_direction="column",
348
+ gap=24,
349
+ )
350
+ ):
351
+ for example in state.examples:
352
+ example_box(example)
353
+ if not state.output and state.intermediate_citations:
354
+ with me.box(
355
+ style=me.Style(
356
+ padding=me.Padding(top=16),
357
+ display="flex",
358
+ flex_direction="column",
359
+ gap=16,
360
+ ),
361
+ ):
362
+ for citation in state.intermediate_citations:
363
+ with citation_box(url=citation.url):
364
+ citation_content(
365
+ Citation(
366
+ url=citation.url,
367
+ title=citation.title,
368
+ breadcrumbs=citation.breadcrumbs,
369
+ original_numbers=citation.original_numbers,
370
+ content=citation.content,
371
+ number=0,
372
+ )
373
+ )
374
+ for msg in state.output:
375
+ with me.box(
376
+ style=me.Style(
377
+ display="flex", flex_direction="column", align_items="start"
378
+ )
379
+ ):
380
+ if msg.role == _ROLE_ASSISTANT:
381
+ me.text(bot_user, style=_STYLE_CHAT_BUBBLE_NAME)
382
+ else:
383
+ me.text("You", style=_STYLE_CHAT_BUBBLE_NAME)
384
+ with me.box(
385
+ style=me.Style(
386
+ width="100%",
387
+ font_size="16px",
388
+ line_height="1.5",
389
+ border_radius="15px",
390
+ padding=me.Padding(right=15, left=15, bottom=3),
391
+ margin=me.Margin(bottom=10),
392
+ )
393
+ ):
394
+ if msg.role == _ROLE_USER:
395
+ me.text(
396
+ msg.content, style=me.Style(margin=me.Margin(bottom=16))
397
+ )
398
+ else:
399
+ if state.in_progress:
400
+ me.progress_spinner()
401
+ used_citation_numbers: set[int] = set()
402
+
403
+ for chunk in msg.chunks:
404
+ me.text(
405
+ chunk.content,
406
+ style=me.Style(white_space="pre-wrap", display="inline"),
407
+ )
408
+ if chunk.citation_numbers:
409
+ with me.box(
410
+ style=me.Style(
411
+ display="inline-flex",
412
+ flex_direction="row",
413
+ gap=4,
414
+ margin=me.Margin.symmetric(horizontal=6),
415
+ )
416
+ ):
417
+ for citation_number in chunk.citation_numbers:
418
+ used_citation_numbers.add(citation_number)
419
+
420
+ citation_tooltip(
421
+ get_citation_number(
422
+ citation_number, used_citation_numbers
423
+ )
424
+ )
425
+
426
+ with me.box(
427
+ style=me.Style(
428
+ padding=me.Padding(top=16),
429
+ display="flex",
430
+ flex_direction="column",
431
+ gap=16,
432
+ ),
433
+ ):
434
+ for citation in state.citations:
435
+ if citation.number in used_citation_numbers:
436
+ with citation_box(url=citation.url):
437
+ citation_content(
438
+ Citation(
439
+ url=citation.url,
440
+ title=citation.title,
441
+ breadcrumbs=citation.breadcrumbs,
442
+ original_numbers=citation.original_numbers,
443
+ content=citation.content,
444
+ number=get_citation_number(
445
+ citation.number, used_citation_numbers
446
+ ),
447
+ )
448
+ )
449
+ if not me.state(State).in_progress:
450
+ with me.box(
451
+ style=me.Style(
452
+ display="flex",
453
+ flex_direction="row",
454
+ gap=4,
455
+ margin=me.Margin(top=16),
456
+ )
457
+ ):
458
+ NEWLINE = "\n"
459
+ me.text("Is there an issue with this this response?")
460
+ me.link(
461
+ text="File an issue",
462
+ url="https://github.com/mesop-dev/mesop/issues/new?assignees=&labels=bug,chatbot&projects=&title=Bad%20chatbot%20response&body="
463
+ + urllib.parse.quote(f"""
464
+ What was the issue with the chatbot response?
465
+
466
+ ---
467
+ Original content:
468
+
469
+ __Prompt:__
470
+ {state.output[0].content}
471
+
472
+ __Response:__
473
+ {state.output[-1].content}
474
+
475
+ __Citations:__
476
+
477
+ {NEWLINE.join([f"1. {citation.url}" for citation in state.citations])}
478
+ """),
479
+ style=me.Style(
480
+ color=me.theme_var("primary"),
481
+ text_decoration="none",
482
+ ),
483
+ open_in_new_tab=True,
484
+ )
485
+
486
+
487
+ def citation_tooltip(citation_number: int):
488
+ state = me.state(State)
489
+ with me.box(style=me.Style(display="inline-block")):
490
+ with me.tooltip(
491
+ message=state.citations[citation_number - 1].title,
492
+ position="below",
493
+ ):
494
+ me.text(
495
+ f"{citation_number}",
496
+ style=me.Style(
497
+ background=me.theme_var("surface-variant"),
498
+ padding=me.Padding.symmetric(horizontal=5),
499
+ border_radius="6px",
500
+ font_weight=500,
501
+ ),
502
+ )
503
+
504
+
505
+ @me.web_component(path="./citation.js")
506
+ def citation_box(
507
+ *,
508
+ url: str,
509
+ key: str | None = None,
510
+ ):
511
+ return me.insert_web_component(
512
+ name="citation-component",
513
+ key=key,
514
+ properties={
515
+ "url": url,
516
+ "active": True,
517
+ },
518
+ )
519
+
520
+
521
+ def citation_content(citation: Citation):
522
+ with me.box(
523
+ style=me.Style(
524
+ display="flex",
525
+ flex_direction="column",
526
+ padding=me.Padding.symmetric(vertical=8, horizontal=16),
527
+ cursor="pointer",
528
+ ),
529
+ ):
530
+ with me.box(
531
+ style=me.Style(
532
+ display="flex",
533
+ flex_direction="row",
534
+ gap=4,
535
+ align_items="start",
536
+ )
537
+ ):
538
+ if citation.number:
539
+ me.text(
540
+ f"{citation.number}", style=me.Style(font_weight=500, font_size=18)
541
+ )
542
+ me.icon(
543
+ icon="description",
544
+ style=me.Style(font_size=20, padding=me.Padding(top=3, left=3)),
545
+ )
546
+
547
+ me.text(citation.title)
548
+ with me.box(
549
+ style=me.Style(
550
+ display="flex",
551
+ flex_direction="row",
552
+ gap=8,
553
+ font_size="14px",
554
+ font_weight=500,
555
+ )
556
+ ):
557
+ for breadcrumb in citation.breadcrumbs:
558
+ me.text(breadcrumb)
559
+ if breadcrumb != citation.breadcrumbs[-1]:
560
+ me.text(" > ")
561
+
562
+
563
+ def example_box(example: str):
564
+ with me.box(
565
+ style=me.Style(
566
+ background=me.theme_var("secondary-container"),
567
+ border_radius="12px",
568
+ padding=me.Padding(left=16, right=16, top=16, bottom=16),
569
+ cursor="pointer",
570
+ ),
571
+ key=example,
572
+ on_click=on_click_example,
573
+ ):
574
+ me.text(example)
575
+
576
+
577
+ def on_click_example(e: me.ClickEvent) -> Generator[None, None, None]:
578
+ state = me.state(State)
579
+ state.input = e.key
580
+ yield from submit()
581
+
582
+
583
+ def transform(
584
+ message: str, history: list[ChatMessage]
585
+ ) -> Generator[str, None, None]:
586
+ response = ask(message)
587
+ citations = get_citations(response.source_nodes)
588
+
589
+ me.state(State).citations = citations
590
+ yield from response.response_gen
591
+
592
+
593
+ def get_citations(source_nodes: list[NodeWithScore]) -> list[Citation]:
594
+ citations: list[Citation] = []
595
+
596
+ for i, source_node in enumerate(source_nodes):
597
+ url: str = source_node.node.metadata.get("url", "")
598
+ breadcrumbs = url.split("https://mesop-dev.github.io/mesop/")[-1].split("/")
599
+ title = source_node.node.metadata.get("title", "")
600
+ content_lines = source_node.node.get_content().split("\n")
601
+
602
+ for line in content_lines[2:]:
603
+ if line and not line.startswith("```"):
604
+ break
605
+ if len(content_lines) > 2:
606
+ fragment: str = (
607
+ "#:~:text="
608
+ + urllib.parse.quote(content_lines[1])
609
+ + ",-"
610
+ # Just take the first two words of the line to avoid
611
+ # mismatching (e.g. URLs).
612
+ + urllib.parse.quote(" ".join(line.split(" ")[:2]))
613
+ )
614
+ else:
615
+ fragment = ""
616
+ citations.append(
617
+ Citation(
618
+ url=url + fragment,
619
+ breadcrumbs=breadcrumbs,
620
+ title=title,
621
+ number=i + 1,
622
+ )
623
+ )
624
+ return citations
625
+
626
+
627
+ def get_citation_number(
628
+ citation_number: int, used_citation_numbers: set[int]
629
+ ) -> int:
630
+ number = 0
631
+ for n in used_citation_numbers:
632
+ number += 1 # noqa: SIM113
633
+ if n == citation_number:
634
+ return number
635
+ raise ValueError(f"Citation number {citation_number} not found")
636
+
637
+
638
+ @me.web_component(path="./frame_listener.js")
639
+ def frame_listener(
640
+ *,
641
+ key: str | None = None,
642
+ ):
643
+ pass
pyproject.toml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "docbot"
3
+ version = "0.1.0"
4
+ description = "A chatbot for docs"
5
+ readme = "README.md"
6
+ requires-python = ">=3.10"
7
+ dependencies = [
8
+ "gunicorn>=23.0.0",
9
+ "nest-asyncio>=1.6.0",
10
+ "llama-index==0.10.68",
11
+ "google-generativeai>=0.5.4",
12
+ "llama-index-llms-gemini==0.2.0",
13
+ "llama-index-embeddings-google==0.1.6",
14
+ "llama-index-retrievers-bm25==0.2.2",
15
+ "mesop>=1.0.0",
16
+ ]
17
+
18
+ # uv required properties:
19
+
20
+ [tool.uv]
21
+ dev-dependencies = []
22
+
23
+ [tool.uv.workspace]
24
+
25
+ [build-system]
26
+ requires = ["hatchling"]
27
+ build-backend = "hatchling.build"
28
+
29
+ # See: https://github.com/astral-sh/uv/issues/6293
30
+ [tool.hatch.build.targets.wheel]
31
+ packages = ["."]
recorder.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Create a folder at out_dir + query (percent encoded)
2
+ import argparse
3
+ import os
4
+ import sys
5
+ import urllib.parse
6
+
7
+ from docs_index import blocking_query_engine
8
+ from llama_index.core.instrumentation import get_dispatcher
9
+ from llama_index.core.instrumentation.event_handlers import BaseEventHandler
10
+ from llama_index.core.instrumentation.events.llm import (
11
+ LLMChatEndEvent,
12
+ LLMCompletionEndEvent,
13
+ )
14
+
15
+
16
+ class ModelEventHandler(BaseEventHandler):
17
+ @classmethod
18
+ def class_name(cls) -> str:
19
+ """Class name."""
20
+ return "ModelEventHandler"
21
+
22
+ def handle(self, event) -> None:
23
+ """Logic for handling event."""
24
+ if isinstance(event, LLMCompletionEndEvent):
25
+ print(f"LLM Prompt length: {len(event.prompt)}")
26
+ print(f"LLM Prompt CONTENT: {event.prompt}")
27
+ print(f"LLM Completion: {event.response.text!s}")
28
+ elif isinstance(event, LLMChatEndEvent):
29
+ messages_str = "\n".join([str(x.content) for x in event.messages])
30
+ print(f"LLM Input Messages RAW: {event.messages}")
31
+ print(f"LLM Input Messages length: {len(messages_str)}")
32
+ print(f"LLM Input Messages CONTENT: {messages_str}")
33
+ print(f"LLM Response: {event.response.message.content!s}")
34
+
35
+ # Create a folder for the query
36
+ query_folder = os.path.join(args.out_dir, urllib.parse.quote(query))
37
+ os.makedirs(query_folder, exist_ok=True)
38
+ print(f"Created folder for query: {query_folder}")
39
+
40
+ # Save the LLM input and output to files
41
+ with open(os.path.join(query_folder, "input.txt"), "w") as f:
42
+ f.write(messages_str)
43
+ with open(os.path.join(query_folder, "output.txt"), "w") as f:
44
+ f.write(str(event.response.message.content))
45
+
46
+
47
+ # root dispatcher
48
+ root_dispatcher = get_dispatcher()
49
+
50
+ # register event handler
51
+ root_dispatcher.add_event_handler(ModelEventHandler())
52
+
53
+ QUERIES = [
54
+ "How can I reset an input component?",
55
+ "Show me how to style a component",
56
+ "Create a multi-page app",
57
+ "Is it possible to create custom components?",
58
+ "Implement authentication",
59
+ "Deploy a Mesop app",
60
+ "Optimize performance",
61
+ "Can I use JavaScript libraries in Mesop?",
62
+ "Stream UI updates from an LLM API",
63
+ "Debug a Mesop application",
64
+ "Is Mesop ready for production use?",
65
+ "Create a mobile-friendly and responsive UI",
66
+ "Handle asynchronous operations",
67
+ "Implement dark mode",
68
+ "Add tooltips to Mesop components",
69
+ "Render a pandas DataFrame as a table",
70
+ "Add charts",
71
+ "Handle file uploads",
72
+ ]
73
+
74
+ # QUERIES = [
75
+ # "How do I test a Mesop application?",
76
+ # "What components are available in Mesop?",
77
+ # "How can I reset a text input field in Mesop?",
78
+ # "Show me how to style a component in Mesop",
79
+ # "Create a multi-page app using Mesop",
80
+ # "Is it possible to create custom components in Mesop?",
81
+ # "Implement authentication in a Mesop app",
82
+ # "How do I call an API from a Mesop application?",
83
+ # "What's the process for deploying a Mesop app?",
84
+ # "Optimize performance in a Mesop application",
85
+ # "Implement a datepicker in Mesop",
86
+ # "Can I use JavaScript libraries with Mesop?",
87
+ # "Implement real-time updates in a Mesop app",
88
+ # "Stream UI updates from an LLM API in Mesop",
89
+ # "Debug a Mesop application",
90
+ # "Is Mesop ready for production use?",
91
+ # "Implement form validation in Mesop",
92
+ # "Create a mobile-friendly Mesop app",
93
+ # "Handle asynchronous operations in Mesop",
94
+ # "Implement dark mode in a Mesop application",
95
+ # "Add keyboard shortcuts to a Mesop app",
96
+ # "Implement drag and drop functionality in Mesop",
97
+ # "Create an infinite scroll feature in Mesop",
98
+ # "How to make a row of components in Mesop",
99
+ # "Add tooltips to Mesop components",
100
+ # "Render a pandas DataFrame in a Mesop app",
101
+ # "Add charts to a Mesop application",
102
+ # "Create a table component in Mesop",
103
+ # "Handle file uploads in a Mesop app",
104
+ # "Use command-line flags with a Mesop application",
105
+ # "Create a clickable link in Mesop",
106
+ # "Implement a download link in a Mesop app",
107
+ # ]
108
+
109
+
110
+ parser = argparse.ArgumentParser(
111
+ description="Process queries and record model events."
112
+ )
113
+ parser.add_argument(
114
+ "--out-dir", type=str, help="Output directory for recorded events"
115
+ )
116
+ args = parser.parse_args()
117
+
118
+ if args.out_dir:
119
+ print(f"Output directory set to: {args.out_dir}")
120
+
121
+ # Create the output directory if it doesn't exist
122
+ os.makedirs(args.out_dir, exist_ok=True)
123
+ print(f"Created output directory: {args.out_dir}")
124
+ else:
125
+ print("No output directory specified. Exiting! Specify with --out-dir")
126
+ sys.exit(1)
127
+
128
+
129
+ for query in QUERIES:
130
+ blocking_query_engine.query(query)
requirements.txt ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file was autogenerated by uv via the following command:
2
+ # uv pip compile pyproject.toml -o requirements.txt
3
+ absl-py==2.1.0
4
+ # via mesop
5
+ aiohappyeyeballs==2.4.0
6
+ # via aiohttp
7
+ aiohttp==3.10.11
8
+ # via
9
+ # llama-index-core
10
+ # llama-index-legacy
11
+ aiosignal==1.3.1
12
+ # via aiohttp
13
+ annotated-types==0.7.0
14
+ # via pydantic
15
+ anyio==4.4.0
16
+ # via
17
+ # httpx
18
+ # openai
19
+ async-timeout==4.0.3
20
+ # via aiohttp
21
+ attrs==24.2.0
22
+ # via aiohttp
23
+ beautifulsoup4==4.12.3
24
+ # via llama-index-readers-file
25
+ blinker==1.8.2
26
+ # via flask
27
+ bm25s==0.1.10
28
+ # via llama-index-retrievers-bm25
29
+ cachetools==5.5.0
30
+ # via google-auth
31
+ certifi==2024.8.30
32
+ # via
33
+ # httpcore
34
+ # httpx
35
+ # requests
36
+ charset-normalizer==3.3.2
37
+ # via requests
38
+ click==8.1.7
39
+ # via
40
+ # flask
41
+ # nltk
42
+ dataclasses-json==0.6.7
43
+ # via
44
+ # llama-index-core
45
+ # llama-index-legacy
46
+ deepdiff==6.7.1
47
+ # via mesop
48
+ deprecated==1.2.14
49
+ # via
50
+ # llama-index-core
51
+ # llama-index-legacy
52
+ dirtyjson==1.0.8
53
+ # via
54
+ # llama-index-core
55
+ # llama-index-legacy
56
+ distro==1.9.0
57
+ # via openai
58
+ exceptiongroup==1.2.2
59
+ # via anyio
60
+ flask==3.0.3
61
+ # via mesop
62
+ frozenlist==1.4.1
63
+ # via
64
+ # aiohttp
65
+ # aiosignal
66
+ fsspec==2024.6.1
67
+ # via
68
+ # llama-index-core
69
+ # llama-index-legacy
70
+ google-ai-generativelanguage==0.6.4
71
+ # via google-generativeai
72
+ google-api-core==2.19.1
73
+ # via
74
+ # google-ai-generativelanguage
75
+ # google-api-python-client
76
+ # google-generativeai
77
+ google-api-python-client==2.142.0
78
+ # via google-generativeai
79
+ google-auth==2.34.0
80
+ # via
81
+ # google-ai-generativelanguage
82
+ # google-api-core
83
+ # google-api-python-client
84
+ # google-auth-httplib2
85
+ # google-generativeai
86
+ google-auth-httplib2==0.2.0
87
+ # via google-api-python-client
88
+ google-generativeai==0.5.4
89
+ # via
90
+ # docbot (pyproject.toml)
91
+ # llama-index-embeddings-google
92
+ # llama-index-llms-gemini
93
+ googleapis-common-protos==1.63.2
94
+ # via
95
+ # google-api-core
96
+ # grpcio-status
97
+ greenlet==3.0.3
98
+ # via sqlalchemy
99
+ grpcio==1.66.0
100
+ # via
101
+ # google-api-core
102
+ # grpcio-status
103
+ grpcio-status==1.62.3
104
+ # via google-api-core
105
+ gunicorn==23.0.0
106
+ # via docbot (pyproject.toml)
107
+ h11==0.14.0
108
+ # via httpcore
109
+ httpcore==1.0.5
110
+ # via httpx
111
+ httplib2==0.22.0
112
+ # via
113
+ # google-api-python-client
114
+ # google-auth-httplib2
115
+ httpx==0.27.0
116
+ # via
117
+ # llama-cloud
118
+ # llama-index-core
119
+ # llama-index-legacy
120
+ # openai
121
+ idna==3.8
122
+ # via
123
+ # anyio
124
+ # httpx
125
+ # requests
126
+ # yarl
127
+ itsdangerous==2.2.0
128
+ # via flask
129
+ jinja2==3.1.4
130
+ # via flask
131
+ jiter==0.5.0
132
+ # via openai
133
+ joblib==1.4.2
134
+ # via nltk
135
+ llama-cloud==0.0.15
136
+ # via llama-index-indices-managed-llama-cloud
137
+ llama-index==0.10.68
138
+ # via docbot (pyproject.toml)
139
+ llama-index-agent-openai==0.2.9
140
+ # via
141
+ # llama-index
142
+ # llama-index-program-openai
143
+ llama-index-cli==0.1.13
144
+ # via llama-index
145
+ llama-index-core==0.10.68.post1
146
+ # via
147
+ # llama-index
148
+ # llama-index-agent-openai
149
+ # llama-index-cli
150
+ # llama-index-embeddings-google
151
+ # llama-index-embeddings-openai
152
+ # llama-index-indices-managed-llama-cloud
153
+ # llama-index-llms-gemini
154
+ # llama-index-llms-openai
155
+ # llama-index-multi-modal-llms-openai
156
+ # llama-index-program-openai
157
+ # llama-index-question-gen-openai
158
+ # llama-index-readers-file
159
+ # llama-index-readers-llama-parse
160
+ # llama-index-retrievers-bm25
161
+ # llama-parse
162
+ llama-index-embeddings-google==0.1.6
163
+ # via docbot (pyproject.toml)
164
+ llama-index-embeddings-openai==0.1.11
165
+ # via
166
+ # llama-index
167
+ # llama-index-cli
168
+ llama-index-indices-managed-llama-cloud==0.2.7
169
+ # via llama-index
170
+ llama-index-legacy==0.9.48.post3
171
+ # via llama-index
172
+ llama-index-llms-gemini==0.2.0
173
+ # via docbot (pyproject.toml)
174
+ llama-index-llms-openai==0.1.31
175
+ # via
176
+ # llama-index
177
+ # llama-index-agent-openai
178
+ # llama-index-cli
179
+ # llama-index-multi-modal-llms-openai
180
+ # llama-index-program-openai
181
+ # llama-index-question-gen-openai
182
+ llama-index-multi-modal-llms-openai==0.1.9
183
+ # via llama-index
184
+ llama-index-program-openai==0.1.7
185
+ # via
186
+ # llama-index
187
+ # llama-index-question-gen-openai
188
+ llama-index-question-gen-openai==0.1.3
189
+ # via llama-index
190
+ llama-index-readers-file==0.1.33
191
+ # via llama-index
192
+ llama-index-readers-llama-parse==0.1.6
193
+ # via llama-index
194
+ llama-index-retrievers-bm25==0.2.2
195
+ # via docbot (pyproject.toml)
196
+ llama-parse==0.4.9
197
+ # via llama-index-readers-llama-parse
198
+ markupsafe==2.1.5
199
+ # via
200
+ # jinja2
201
+ # werkzeug
202
+ marshmallow==3.22.0
203
+ # via dataclasses-json
204
+ mesop==1.0.0
205
+ # via docbot (pyproject.toml)
206
+ msgpack==1.0.8
207
+ # via mesop
208
+ multidict==6.0.5
209
+ # via
210
+ # aiohttp
211
+ # yarl
212
+ mypy-extensions==1.0.0
213
+ # via typing-inspect
214
+ nest-asyncio==1.6.0
215
+ # via
216
+ # docbot (pyproject.toml)
217
+ # llama-index-core
218
+ # llama-index-legacy
219
+ networkx==3.3
220
+ # via
221
+ # llama-index-core
222
+ # llama-index-legacy
223
+ nltk==3.9.1
224
+ # via
225
+ # llama-index-core
226
+ # llama-index-legacy
227
+ numpy==1.26.4
228
+ # via
229
+ # bm25s
230
+ # llama-index-core
231
+ # llama-index-legacy
232
+ # pandas
233
+ # scipy
234
+ openai==1.42.0
235
+ # via
236
+ # llama-index-agent-openai
237
+ # llama-index-legacy
238
+ # llama-index-llms-openai
239
+ ordered-set==4.1.0
240
+ # via deepdiff
241
+ packaging==24.1
242
+ # via
243
+ # gunicorn
244
+ # marshmallow
245
+ pandas==2.2.2
246
+ # via
247
+ # llama-index-core
248
+ # llama-index-legacy
249
+ pillow==10.4.0
250
+ # via
251
+ # llama-index-core
252
+ # llama-index-llms-gemini
253
+ propcache==0.3.0
254
+ # via yarl
255
+ proto-plus==1.24.0
256
+ # via
257
+ # google-ai-generativelanguage
258
+ # google-api-core
259
+ protobuf==4.25.4
260
+ # via
261
+ # google-ai-generativelanguage
262
+ # google-api-core
263
+ # google-generativeai
264
+ # googleapis-common-protos
265
+ # grpcio-status
266
+ # mesop
267
+ # proto-plus
268
+ pyasn1==0.6.0
269
+ # via
270
+ # pyasn1-modules
271
+ # rsa
272
+ pyasn1-modules==0.4.0
273
+ # via google-auth
274
+ pydantic==2.8.2
275
+ # via
276
+ # google-generativeai
277
+ # llama-cloud
278
+ # llama-index-core
279
+ # mesop
280
+ # openai
281
+ pydantic-core==2.20.1
282
+ # via pydantic
283
+ pyparsing==3.1.4
284
+ # via httplib2
285
+ pypdf==4.3.1
286
+ # via llama-index-readers-file
287
+ pystemmer==2.2.0.1
288
+ # via llama-index-retrievers-bm25
289
+ python-dateutil==2.9.0.post0
290
+ # via pandas
291
+ python-dotenv==1.0.1
292
+ # via mesop
293
+ pytz==2024.1
294
+ # via pandas
295
+ pyyaml==6.0.2
296
+ # via llama-index-core
297
+ regex==2024.7.24
298
+ # via
299
+ # nltk
300
+ # tiktoken
301
+ requests==2.32.3
302
+ # via
303
+ # google-api-core
304
+ # llama-index-core
305
+ # llama-index-legacy
306
+ # tiktoken
307
+ rsa==4.9
308
+ # via google-auth
309
+ scipy==1.14.1
310
+ # via bm25s
311
+ six==1.16.0
312
+ # via python-dateutil
313
+ sniffio==1.3.1
314
+ # via
315
+ # anyio
316
+ # httpx
317
+ # openai
318
+ soupsieve==2.6
319
+ # via beautifulsoup4
320
+ sqlalchemy==2.0.32
321
+ # via
322
+ # llama-index-core
323
+ # llama-index-legacy
324
+ striprtf==0.0.26
325
+ # via llama-index-readers-file
326
+ tenacity==8.5.0
327
+ # via
328
+ # llama-index-core
329
+ # llama-index-legacy
330
+ tiktoken==0.7.0
331
+ # via
332
+ # llama-index-core
333
+ # llama-index-legacy
334
+ tqdm==4.66.5
335
+ # via
336
+ # google-generativeai
337
+ # llama-index-core
338
+ # nltk
339
+ # openai
340
+ typing-extensions==4.12.2
341
+ # via
342
+ # anyio
343
+ # google-generativeai
344
+ # llama-index-core
345
+ # llama-index-legacy
346
+ # openai
347
+ # pydantic
348
+ # pydantic-core
349
+ # pypdf
350
+ # sqlalchemy
351
+ # typing-inspect
352
+ typing-inspect==0.9.0
353
+ # via
354
+ # dataclasses-json
355
+ # llama-index-core
356
+ # llama-index-legacy
357
+ tzdata==2024.1
358
+ # via pandas
359
+ uritemplate==4.1.1
360
+ # via google-api-python-client
361
+ urllib3==2.2.2
362
+ # via requests
363
+ watchdog==4.0.2
364
+ # via mesop
365
+ werkzeug==3.0.6
366
+ # via
367
+ # flask
368
+ # mesop
369
+ wrapt==1.16.0
370
+ # via
371
+ # deprecated
372
+ # llama-index-core
373
+ yarl==1.18.3
374
+ # via aiohttp
scrollable.js ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import {
2
+ LitElement,
3
+ html,
4
+ css,
5
+ } from 'https://cdn.jsdelivr.net/gh/lit/dist@3/core/lit-core.min.js';
6
+
7
+ class ScrollableComponent extends LitElement {
8
+ renderRoot() {
9
+ return this;
10
+ }
11
+ firstUpdated() {
12
+ // this.focus();
13
+ }
14
+ render() {
15
+ this.tabIndex = 0;
16
+ this.style.overflowY = 'auto';
17
+ this.style.outline = 'none';
18
+ }
19
+ }
20
+
21
+ customElements.define('scrollable-component', ScrollableComponent);
uv.lock ADDED
The diff for this file is too large to render. See raw diff