Witold Wydmański commited on
Commit
242f3e4
·
1 Parent(s): 6a7874b

fix: formatting, output type

Browse files
Files changed (1) hide show
  1. app.py +55 -25
app.py CHANGED
@@ -27,7 +27,7 @@ def convert_outputs_to_pdb(outputs):
27
  chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None,
28
  )
29
  pdbs.append(to_pdb(pred))
30
- return pdbs
31
 
32
  def fold_prot_locally(sequence):
33
  logger.info("Folding: " + sequence)
@@ -38,30 +38,41 @@ def fold_prot_locally(sequence):
38
  pdb = convert_outputs_to_pdb(output)
39
  return pdb
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  sample_code = """
42
- ## Sample usage
 
 
 
 
 
 
 
 
43
 
44
- from gradio_client import Client
45
-
46
- client = Client("https://wwydmanski-esmfold.hf.space/")
47
-
48
- def fold_huggingface(sequence, fname=None):
49
- result = client.predict(
50
- sequence, # str in 'sequence' Textbox component
51
- api_name="/predict")
52
- result = eval(result)[0]
53
- if fname is None:
54
- with tempfile.NamedTemporaryFile("w", delete=False, suffix=".pdb", prefix="esmfold_") as fp:
55
- fp.write(result)
56
- fp.flush()
57
- return fp.name
58
- else:
59
- with open(fname, "w") as fp:
60
- fp.write(result)
61
- fp.flush()
62
- return fname
63
- pdb_fname = fold_huggingface("MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN")
64
-
65
  """
66
 
67
  tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
@@ -69,6 +80,25 @@ model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_
69
  model.esm = model.esm.half()
70
  torch.backends.cuda.matmul.allow_tf32 = True
71
 
72
- iface = gr.Interface(fn=fold_prot_locally, inputs="text", outputs="text", article=sample_code, title="ESMFold")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- iface.launch()
 
27
  chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None,
28
  )
29
  pdbs.append(to_pdb(pred))
30
+ return pdbs[0]
31
 
32
  def fold_prot_locally(sequence):
33
  logger.info("Folding: " + sequence)
 
38
  pdb = convert_outputs_to_pdb(output)
39
  return pdb
40
 
41
+ def suggest(option):
42
+ if option == "Plastic degradation protein":
43
+ suggestion = "MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ"
44
+ elif option == "Antifreeze protein":
45
+ suggestion = "QCTGGADCTSCTGACTGCGNCPNAVTCTNSQHCVKANTCTGSTDCNTAQTCTNSKDCFEANTCTDSTNCYKATACTNSSGCPGH"
46
+ elif option == "AI Generated protein":
47
+ suggestion = "MSGMKKLYEYTVTTLDEFLEKLKEFILNTSKDKIYKLTITNPKLIKDIGKAIAKAAEIADVDPKEIEEMIKAVEENELTKLVITIEQTDDKYVIKVELENEDGLVHSFEIYFKNKEEMEKFLELLEKLISKLSGS"
48
+ elif option == "7-bladed propeller fold":
49
+ suggestion = "VKLAGNSSLCPINGWAVYSKDNSIRIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDGTSWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFKMEKGKVVKSVELDAPNYHYEECSCYPNAGEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGAYGVKGFSFKYGNGVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKESTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTIDK"
50
+ else:
51
+ suggestion = ""
52
+ return suggestion
53
+
54
  sample_code = """
55
+ from gradio_client import Client
56
+ import json
57
+
58
+ client = Client("https://wwydmanski-esmfold.hf.space/")
59
+
60
+ def fold_huggingface(sequence, fname=None):
61
+ result = client.predict(
62
+ sequence, # str in 'sequence' Textbox component
63
+ api_name="/predict")
64
 
65
+ if fname is None:
66
+ with tempfile.NamedTemporaryFile("w", delete=False, suffix=".pdb", prefix="esmfold_") as fp:
67
+ fp.write(result)
68
+ fp.flush()
69
+ return fp.name
70
+ else:
71
+ with open(fname, "w") as fp:
72
+ fp.write(result)
73
+ fp.flush()
74
+ return fname
75
+ pdb_fname = fold_huggingface("MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN")
 
 
 
 
 
 
 
 
 
 
76
  """
77
 
78
  tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
 
80
  model.esm = model.esm.half()
81
  torch.backends.cuda.matmul.allow_tf32 = True
82
 
83
+ with gr.Blocks() as demo:
84
+ gr.Markdown("# ESMFold")
85
+ with gr.Row():
86
+ with gr.Column():
87
+ inp = gr.Textbox(lines=1, label="Sequence")
88
+ name = gr.Dropdown(label="Choose a Sample Protein", value="Plastic degradation protein", choices=["Antifreeze protein", "Plastic degradation protein", "AI Generated protein", "7-bladed propeller fold", "custom"])
89
+ btn = gr.Button("🔬 Predict Structure ")
90
+
91
+ with gr.Row():
92
+ with gr.Column():
93
+ gr.Markdown("## Sample code")
94
+ gr.Code(sample_code, label="Sample usage", language="python", interactive=False)
95
+
96
+ with gr.Row():
97
+ with gr.Column():
98
+ gr.Markdown("## Output")
99
+ out = gr.Code(label="Output", interactive=False)
100
+
101
+ name.change(fn=suggest, inputs=name, outputs=inp)
102
+ btn.click(fold_prot_locally, inputs=[inp], outputs=[out])
103
 
104
+ demo.launch()