File size: 13,416 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e814557
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e814557
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e814557
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e814557
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import math
import os
import json
from dataclasses import dataclass, field

import random
import imageio
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor, CLIPTokenizer

from craftsman import register
from craftsman.utils.base import Updateable
from craftsman.utils.config import parse_structured
from craftsman.utils.typing import *

def rot2eul(R):
    beta = -np.arcsin(R[2,0])
    alpha = np.arctan2(R[2,1]/np.cos(beta),R[2,2]/np.cos(beta))
    gamma = np.arctan2(R[1,0]/np.cos(beta),R[0,0]/np.cos(beta))
    return np.array((alpha, beta, gamma))

def eul2rot(theta) :
    R = np.array([[np.cos(theta[1])*np.cos(theta[2]),       np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]),      np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])],
                  [np.sin(theta[2])*np.cos(theta[1]),       np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]),      np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])],
                  [-np.sin(theta[1]),                        np.sin(theta[0])*np.cos(theta[1]),                                                           np.cos(theta[0])*np.cos(theta[1])]])
    return R

@dataclass
class ObjaverseDataModuleConfig:
    root_dir: str = None
    data_type: str = "occupancy"         # occupancy or sdf
    n_samples: int = 4096                # number of points in input point cloud
    scale: float = 1.0                   # scale of the input point cloud and target supervision
    noise_sigma: float = 0.0             # noise level of the input point cloud
    
    load_supervision: bool = True        # whether to load supervision
    supervision_type: str = "occupancy"  # occupancy, sdf, tsdf, tsdf_w_surface
    n_supervision: int = 10000           # number of points in supervision
    
    load_image: bool = False             # whether to load images 
    image_data_path: str = ""            # path to the image data
    image_type: str = "rgb"              # rgb, normal
    background_color: Tuple[float, float, float] = field(
            default_factory=lambda: (1.0, 1.0, 1.0)
        )
    idx: Optional[List[int]] = None      # index of the image to load
    n_views: int = 1                     # number of views
    rotate_points: bool = False          # whether to rotate the input point cloud and the supervision

    load_caption: bool = False           # whether to load captions
    caption_type: str = "text"           # text, clip_embeds
    tokenizer_pretrained_model_name_or_path: str = ""

    batch_size: int = 32
    num_workers: int = 0

class ObjaverseDataset(Dataset):
    def __init__(self, cfg: Any, split: str) -> None:
        super().__init__()
        self.cfg: ObjaverseDataModuleConfig = cfg
        self.split = split

        self.uids = json.load(open(f'{cfg.root_dir}/{split}.json'))
        print(f"Loaded {len(self.uids)} {split} uids")

        if self.cfg.load_caption:
            self.tokenizer = CLIPTokenizer.from_pretrained(self.cfg.tokenizer_pretrained_model_name_or_path)

        self.background_color = torch.as_tensor(self.cfg.background_color)
        self.distance = 1.0
        self.camera_embedding = torch.as_tensor([
            [[1, 0, 0, 0],
            [0, 0, -1, -self.distance],
            [0, 1, 0, 0],
            [0, 0, 0, 1]], # front to back

            [[0, 0, 1, self.distance],
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 1]], # right to left

            [[-1, 0, 0, 0],
            [0, 0, 1, self.distance],
            [0, 1, 0, 0],
            [0, 0, 0, 1]], # back to front

            [[0, 0, -1, -self.distance],
            [-1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 1]], # left to right
        ], dtype=torch.float32)
        if self.cfg.n_views != 1:
            assert self.cfg.n_views == self.camera_embedding.shape[0]

    def __len__(self):
        return len(self.uids)

    def _load_shape(self, index: int):
        if self.cfg.data_type == "occupancy":
            # for input point cloud
            pointcloud = np.load(f'{self.cfg.root_dir}/{self.uids[index]}/pointcloud.npz')
            surface = np.asarray(pointcloud['points']) * 2 # range from -1 to 1
            normal = np.asarray(pointcloud['normals'])
            surface = np.concatenate([surface, normal], axis=1)
        elif self.cfg.data_type == "sdf":
            data = np.load(f'{self.cfg.root_dir}/{self.uids[index]}.npz')
            # for input point cloud
            surface = data["surface"]
        else:
            raise NotImplementedError(f"Data type {self.cfg.data_type} not implemented")
        
        # random sampling
        rng = np.random.default_rng()
        ind = rng.choice(surface.shape[0], self.cfg.n_samples, replace=False)
        surface = surface[ind]
        # rescale data
        surface[:, :3] = surface[:, :3] * self.cfg.scale # target scale
        # add noise to input point cloud
        surface[:, :3] += (np.random.rand(surface.shape[0], 3) * 2 - 1) * self.cfg.noise_sigma
        ret = {
            "uid": self.uids[index].split('/')[-1],
            "surface": surface.astype(np.float32),
        }

        return ret

    def _load_shape_supervision(self, index: int):
        # for supervision
        ret = {}
        if self.cfg.data_type == "occupancy":
            points = np.load(f'{self.cfg.root_dir}/{self.uids[index]}/points.npz')
            rand_points = np.asarray(points['points']) * 2 # range from -1.1 to 1.1
            occupancies = np.asarray(points['occupancies'])
            occupancies = np.unpackbits(occupancies)
        elif self.cfg.data_type == "sdf":
            data = np.load(f'{self.cfg.root_dir}/{self.uids[index]}.npz')
            rand_points = data['rand_points']
            sdfs = data['sdfs']
        else:
            raise NotImplementedError(f"Data type {self.cfg.data_type} not implemented")

        # random sampling
        rng = np.random.default_rng()
        ind = rng.choice(rand_points.shape[0], self.cfg.n_supervision, replace=False)
        rand_points = rand_points[ind]
        rand_points = rand_points * self.cfg.scale
        ret["rand_points"] = rand_points.astype(np.float32)

        if self.cfg.data_type == "occupancy":
            assert self.cfg.supervision_type == "occupancy", "Only occupancy supervision is supported for occupancy data"
            occupancies = occupancies[ind]
            ret["occupancies"] = occupancies.astype(np.float32)
        elif self.cfg.data_type == "sdf":
            if self.cfg.supervision_type == "sdf":
                ret["sdf"] = sdfs[ind].flatten().astype(np.float32)
            elif self.cfg.supervision_type == "occupancy":
                ret["occupancies"] = np.where(sdfs[ind].flatten() < 1e-3, 0, 1).astype(np.float32)
            else:
                raise NotImplementedError(f"Supervision type {self.cfg.supervision_type} not implemented")

        return ret

    def _load_image(self, index: int):
        def _load_single_image(img_path):
            img = torch.from_numpy(
                np.asarray(
                    Image.fromarray(imageio.v2.imread(img_path))
                    .convert("RGBA")
                )
                / 255.0
            ).float()
            mask: Float[Tensor, "H W 1"] = img[:, :, -1:]
            image: Float[Tensor, "H W 3"] = img[:, :, :3] * mask + self.background_color[
                None, None, :
            ] * (1 - mask)
            return image
        
        ret = {}
        if self.cfg.image_type == "rgb" or self.cfg.image_type == "normal":
            assert self.cfg.n_views == 1, "Only single view is supported for single image"
            sel_idx = random.choice(self.cfg.idx)
            ret["sel_image_idx"] = sel_idx
            if self.cfg.image_type == "rgb":
                img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx}.png"
            elif self.cfg.image_type == "normal":
                img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx}_normal.png"
            ret["image"] = _load_single_image(img_path)
            ret["c2w"] = self.camera_embedding[sel_idx % 4]
        elif self.cfg.image_type == "mvrgb" or self.cfg.image_type == "mvnormal":
            sel_idx = random.choice(self.cfg.idx)
            ret["sel_image_idx"] = sel_idx
            mvimages = []
            for i in range(self.cfg.n_views):
                if self.cfg.image_type == "mvrgb":
                    img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx+i}.png"
                elif self.cfg.image_type == "mvnormal":
                    img_path = f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f"/{sel_idx+i}_normal.png"
                mvimages.append(_load_single_image(img_path))
            ret["mvimages"] = torch.stack(mvimages)
            ret["c2ws"] = self.camera_embedding
        else:
            raise NotImplementedError(f"Image type {self.cfg.image_type} not implemented")
        
        return ret

    def _load_caption(self, index: int, drop_text_embed: bool = False):
        ret = {}
        if self.cfg.caption_type == "text":
            caption = eval(json.load(open(f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f'/annotation.json')))
            texts = [v for k, v in caption.items()]
            sel_idx = random.randint(0, len(texts) - 1)
            ret["sel_caption_idx"] = sel_idx
            ret['text_input_ids'] = self.tokenizer(
                texts[sel_idx] if not drop_text_embed else "",
                max_length=self.tokenizer.model_max_length,
                padding="max_length",
                truncation=True,
                return_tensors="pt"
            ).input_ids.detach()
        else:
            raise NotImplementedError(f"Caption type {self.cfg.caption_type} not implemented")
        
        return ret

    def get_data(self, index):
        # load shape
        ret = self._load_shape(index)

        # load supervision for shape
        if self.cfg.load_supervision:
            ret.update(self._load_shape_supervision(index))

        # load image
        if self.cfg.load_image:
            ret.update(self._load_image(index))

            # load the rotation of the object and rotate the camera
            rots = np.load(f'{self.cfg.image_data_path}/' + "/".join(self.uids[index].split('/')[-2:]) + f'/rots.npy')[ret['sel_image_idx']].astype(np.float32)
            rots = torch.tensor(rots[:3, :3], dtype=torch.float32)
            if "c2ws" in ret.keys():
                ret["c2ws"][:, :3, :3] = torch.matmul(rots, ret["c2ws"][:, :3, :3])
                ret["c2ws"][:, :3, 3] = torch.matmul(rots, ret["c2ws"][:, :3, 3].unsqueeze(-1)).squeeze(-1)
            elif "c2w" in ret.keys():
                ret["c2w"][:3, :3] = torch.matmul(rots, ret["c2w"][:3, :3])
                ret["c2w"][:3, 3] = torch.matmul(rots, ret["c2w"][:3, 3].unsqueeze(-1)).squeeze(-1)

        # load caption
        if self.cfg.load_caption:
            ret.update(self._load_caption(index))

        return ret
        
    def __getitem__(self, index):
        try:
            return self.get_data(index)
        except Exception as e:
            print(f"Error in {self.uids[index]}: {e}")
            return self.__getitem__(np.random.randint(len(self)))


    def collate(self, batch):
        batch = torch.utils.data.default_collate(batch)
        return batch


@register("objaverse-datamodule")
class ObjaverseDataModule(pl.LightningDataModule):
    cfg: ObjaverseDataModuleConfig

    def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
        super().__init__()
        self.cfg = parse_structured(ObjaverseDataModuleConfig, cfg)

    def setup(self, stage=None) -> None:
        if stage in [None, "fit"]:
            self.train_dataset = ObjaverseDataset(self.cfg, "train")
        if stage in [None, "fit", "validate"]:
            self.val_dataset = ObjaverseDataset(self.cfg, "val")
        if stage in [None, "test", "predict"]:
            self.test_dataset = ObjaverseDataset(self.cfg, "test")

    def prepare_data(self):
        pass

    def general_loader(self, dataset, batch_size, collate_fn=None, num_workers=0) -> DataLoader:
        return DataLoader(
            dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=num_workers
        )

    def train_dataloader(self) -> DataLoader:
        return self.general_loader(
            self.train_dataset,
            batch_size=self.cfg.batch_size,
            collate_fn=self.train_dataset.collate,
            num_workers=self.cfg.num_workers
        )

    def val_dataloader(self) -> DataLoader:
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self) -> DataLoader:
        return self.general_loader(self.test_dataset, batch_size=1)

    def predict_dataloader(self) -> DataLoader:
        return self.general_loader(self.test_dataset, batch_size=1)