Spaces:
Runtime error
Runtime error
File size: 6,443 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from craftsman.utils.typing import *
from craftsman.utils.checkpoint import checkpoint
from .utils import init_linear, MLP
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
heads: int,
init_scale: float,
qkv_bias: bool,
use_flash: bool = False
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadAttention(heads=heads, n_ctx=n_ctx, use_flash=use_flash)
init_linear(self.c_qkv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
x = self.c_qkv(x)
x = checkpoint(self.attention, (x,), (), True)
x = self.c_proj(x)
return x
class QKVMultiheadAttention(nn.Module):
def __init__(self, *, heads: int, n_ctx: int, use_flash: bool = False):
super().__init__()
self.heads = heads
self.n_ctx = n_ctx
self.use_flash = use_flash
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
if self.use_flash:
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
else:
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
return out
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
n_ctx: int,
width: int,
heads: int,
init_scale: float = 1.0,
qkv_bias: bool = True,
use_flash: bool = False,
use_checkpoint: bool = False
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.attn = MultiheadAttention(
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash
)
self.ln_1 = nn.LayerNorm(width)
self.mlp = MLP(width=width, init_scale=init_scale)
self.ln_2 = nn.LayerNorm(width)
def _forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
def forward(self, x: torch.Tensor):
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
init_scale: float,
qkv_bias: bool = True,
use_flash: bool = False,
n_data: Optional[int] = None,
data_width: Optional[int] = None,
):
super().__init__()
self.n_data = n_data
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = nn.Linear(width, width, bias=qkv_bias)
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
self.c_proj = nn.Linear(width, width)
self.attention = QKVMultiheadCrossAttention(
heads=heads, n_data=n_data, use_flash=use_flash
)
init_linear(self.c_q, init_scale)
init_linear(self.c_kv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x, data):
x = self.c_q(x)
data = self.c_kv(data)
x = checkpoint(self.attention, (x, data), (), True)
x = self.c_proj(x)
return x
class QKVMultiheadCrossAttention(nn.Module):
def __init__(self, *, heads: int, use_flash: bool = False, n_data: Optional[int] = None):
super().__init__()
self.heads = heads
self.n_data = n_data
self.use_flash = use_flash
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
scale = 1 / math.sqrt(math.sqrt(attn_ch))
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
if self.use_flash:
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
else:
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
return out
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
n_data: Optional[int] = None,
width: int,
heads: int,
data_width: Optional[int] = None,
init_scale: float = 0.25,
qkv_bias: bool = True,
use_flash: bool = False
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
n_data=n_data,
width=width,
heads=heads,
data_width=data_width,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_flash=use_flash,
)
self.ln_1 = nn.LayerNorm(width)
self.ln_2 = nn.LayerNorm(data_width)
self.mlp = MLP(width=width, init_scale=init_scale)
self.ln_3 = nn.LayerNorm(width)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x |