File size: 6,443 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from craftsman.utils.typing import *
from craftsman.utils.checkpoint import checkpoint

from .utils import init_linear, MLP

class MultiheadAttention(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        heads: int,
        init_scale: float,
        qkv_bias: bool,
        use_flash: bool = False
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.heads = heads
        self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadAttention(heads=heads, n_ctx=n_ctx, use_flash=use_flash)
        init_linear(self.c_qkv, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x):
        x = self.c_qkv(x)
        x = checkpoint(self.attention, (x,), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadAttention(nn.Module):
    def __init__(self, *, heads: int, n_ctx: int, use_flash: bool = False):
        super().__init__()
        self.heads = heads
        self.n_ctx = n_ctx
        self.use_flash = use_flash

    def forward(self, qkv):
        bs, n_ctx, width = qkv.shape
        attn_ch = width // self.heads // 3
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        qkv = qkv.view(bs, n_ctx, self.heads, -1)
        q, k, v = torch.split(qkv, attn_ch, dim=-1)

        if self.use_flash:
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
        else:
            weight = torch.einsum(
                "bthc,bshc->bhts", q * scale, k * scale
            )  # More stable with f16 than dividing afterwards
            wdtype = weight.dtype
            weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
            out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)

        return out

class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        n_ctx: int,
        width: int,
        heads: int,
        init_scale: float = 1.0,
        qkv_bias: bool = True,
        use_flash: bool = False,
        use_checkpoint: bool = False
    ):
        super().__init__()

        self.use_checkpoint = use_checkpoint

        self.attn = MultiheadAttention(
            n_ctx=n_ctx,
            width=width,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash
        )
        self.ln_1 = nn.LayerNorm(width)
        self.mlp = MLP(width=width, init_scale=init_scale)
        self.ln_2 = nn.LayerNorm(width)

    def _forward(self, x: torch.Tensor):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

    def forward(self, x: torch.Tensor):
        return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)


class MultiheadCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        width: int,
        heads: int,
        init_scale: float,
        qkv_bias: bool = True,
        use_flash: bool = False,
        n_data: Optional[int] = None,
        data_width: Optional[int] = None,
    ):
        super().__init__()
        self.n_data = n_data
        self.width = width
        self.heads = heads
        self.data_width = width if data_width is None else data_width
        self.c_q = nn.Linear(width, width, bias=qkv_bias)
        self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadCrossAttention(
            heads=heads, n_data=n_data, use_flash=use_flash
        )
        init_linear(self.c_q, init_scale)
        init_linear(self.c_kv, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x, data):
        x = self.c_q(x)
        data = self.c_kv(data)
        x = checkpoint(self.attention, (x, data), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadCrossAttention(nn.Module):
    def __init__(self, *, heads: int, use_flash: bool = False, n_data: Optional[int] = None):

        super().__init__()
        self.heads = heads
        self.n_data = n_data
        self.use_flash = use_flash

    def forward(self, q, kv):
        _, n_ctx, _ = q.shape
        bs, n_data, width = kv.shape
        attn_ch = width // self.heads // 2
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        q = q.view(bs, n_ctx, self.heads, -1)
        kv = kv.view(bs, n_data, self.heads, -1)
        k, v = torch.split(kv, attn_ch, dim=-1)

        if self.use_flash:
            q = q.permute(0, 2, 1, 3)
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            out = F.scaled_dot_product_attention(q, k, v).permute(0, 2, 1, 3).reshape(bs, n_ctx, -1)
        else:
            weight = torch.einsum(
                "bthc,bshc->bhts", q * scale, k * scale
            )  # More stable with f16 than dividing afterwards
            wdtype = weight.dtype
            weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
            out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)

        return out


class ResidualCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        n_data: Optional[int] = None,
        width: int,
        heads: int,
        data_width: Optional[int] = None,
        init_scale: float = 0.25,
        qkv_bias: bool = True,
        use_flash: bool = False
    ):
        super().__init__()

        if data_width is None:
            data_width = width

        self.attn = MultiheadCrossAttention(
            n_data=n_data,
            width=width,
            heads=heads,
            data_width=data_width,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash,
        )
        self.ln_1 = nn.LayerNorm(width)
        self.ln_2 = nn.LayerNorm(data_width)
        self.mlp = MLP(width=width, init_scale=init_scale)
        self.ln_3 = nn.LayerNorm(width)

    def forward(self, x: torch.Tensor, data: torch.Tensor):
        x = x + self.attn(self.ln_1(x), self.ln_2(data))
        x = x + self.mlp(self.ln_3(x))
        return x